YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effects of Lumbar Spine Assemblies and Body-Borne Equipment Mass on Anthropomorphic Test Device Responses During Drop Tests

    Source: Journal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 010::page 101004
    Author:
    Aggromito, Daniel
    ,
    Jaffrey, Mark
    ,
    Chhor, Allen
    ,
    Chen, Bernard
    ,
    Yan, Wenyi
    DOI: 10.1115/1.4037401
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: When simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.
    • Download: (2.183Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effects of Lumbar Spine Assemblies and Body-Borne Equipment Mass on Anthropomorphic Test Device Responses During Drop Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236275
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorAggromito, Daniel
    contributor authorJaffrey, Mark
    contributor authorChhor, Allen
    contributor authorChen, Bernard
    contributor authorYan, Wenyi
    date accessioned2017-11-25T07:20:12Z
    date available2017-11-25T07:20:12Z
    date copyright2017/16/8
    date issued2017
    identifier issn0148-0731
    identifier otherbio_139_10_101004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236275
    description abstractWhen simulating or conducting land mine blast tests on armored vehicles to assess potential occupant injury, the preference is to use the Hybrid III anthropomorphic test device (ATD). In land blast events, neither the effect of body-borne equipment (BBE) on the ATD response nor the dynamic response index (DRI) is well understood. An experimental study was carried out using a drop tower test rig, with a rigid seat mounted on a carriage table undergoing average accelerations of 161 g and 232 g over 3 ms. A key aspect of the work looked at the various lumbar spine assemblies available for a Hybrid III ATD. These can result in different load cell orientations for the ATD which in turn can affect the load measurement in the vertical and horizontal planes. Thirty-two tests were carried out using two BBE mass conditions and three variations of ATDs. The latter were the Hybrid III with the curved (conventional) spine, the Hybrid III with the pedestrian (straight) spine, and the Federal Aviation Administration (FAA) Hybrid III which also has a straight spine. The results showed that the straight lumbar spine assemblies produced similar ATD responses in drop tower tests using a rigid seat. In contrast, the curved lumbar spine assembly generated a lower pelvis acceleration and a higher lumbar load than the straight lumbar spine assemblies. The maximum relative displacement of the lumbar spine occurred after the peak loading event, suggesting that the DRI is not suitable for assessing injury when the impact duration is short and an ATD is seated on a rigid seat on a drop tower. The peak vertical lumbar loads did not change with increasing BBE mass because the equipment mass effects did not become a factor during the peak loading event.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffects of Lumbar Spine Assemblies and Body-Borne Equipment Mass on Anthropomorphic Test Device Responses During Drop Tests
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4037401
    journal fristpage101004
    journal lastpage101004-8
    treeJournal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian