YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam

    Source: Journal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 005::page 51001
    Author:
    Fan, W.
    ,
    Zhu, W. D.
    DOI: 10.1115/1.4036210
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A new locking-free formulation of a three-dimensional shear-deformable beam with large deformations and large rotations is developed. The position of the centroid line of the beam is integrated from its slope that is related to the rotation of a corresponding cross section and stretch and shear strains. The rotation is parameterized by a rotation vector, which has a clear and intuitive physical meaning. Taylor polynomials are used for certain terms that have zero denominators to avoid singularity in numerical implementation. Since the rotation vector can have singular points when its norm equals 2mπ, where m is a nonzero integer, a rescaling strategy is adopted to resolve the singularity problem when there is only one singular point at a time instant, which is the case for most engineering applications. Governing equations of the beam are obtained using Lagrange's equations for systems with constraints, and several benchmark problems are simulated to show the performance of the current formulation. Results show that the current formulation does not suffer from shear and Poisson locking problems that the absolute nodal coordinate formulation (ANCF) can have. Results from the current formulation for a planar static case are compared with its exact solutions, and they are in excellent agreement with each other, which verifies accuracy of the current formulation. Results from the current formulation are compared with those from commercial software abaqus and recurdyn, and they are in good agreement with each other; the current formulation uses much fewer numbers of elements to yield converged results.
    • Download: (2.049Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236269
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorFan, W.
    contributor authorZhu, W. D.
    date accessioned2017-11-25T07:20:12Z
    date available2017-11-25T07:20:12Z
    date copyright2017/26/5
    date issued2017
    identifier issn1048-9002
    identifier othervib_139_05_051001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236269
    description abstractA new locking-free formulation of a three-dimensional shear-deformable beam with large deformations and large rotations is developed. The position of the centroid line of the beam is integrated from its slope that is related to the rotation of a corresponding cross section and stretch and shear strains. The rotation is parameterized by a rotation vector, which has a clear and intuitive physical meaning. Taylor polynomials are used for certain terms that have zero denominators to avoid singularity in numerical implementation. Since the rotation vector can have singular points when its norm equals 2mπ, where m is a nonzero integer, a rescaling strategy is adopted to resolve the singularity problem when there is only one singular point at a time instant, which is the case for most engineering applications. Governing equations of the beam are obtained using Lagrange's equations for systems with constraints, and several benchmark problems are simulated to show the performance of the current formulation. Results show that the current formulation does not suffer from shear and Poisson locking problems that the absolute nodal coordinate formulation (ANCF) can have. Results from the current formulation for a planar static case are compared with its exact solutions, and they are in excellent agreement with each other, which verifies accuracy of the current formulation. Results from the current formulation are compared with those from commercial software abaqus and recurdyn, and they are in good agreement with each other; the current formulation uses much fewer numbers of elements to yield converged results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA New Locking-Free Formulation of a Three-Dimensional Shear-Deformable Beam
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4036210
    journal fristpage51001
    journal lastpage051001-13
    treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian