YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reduced-Order Models of Blisks With Small Geometric Mistuning

    Source: Journal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004::page 41003
    Author:
    Baek, Seunghun
    ,
    Epureanu, Bogdan
    DOI: 10.1115/1.4036105
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A technique for generating reduced-order models (ROMs) of bladed disks with small geometric mistuning is proposed. Discrepancies in structural properties (mistuning) from blade to blade can cause a significant increase in the maximum vibratory stress. The effects of mistuning have been studied over the past few decades. Many researchers have studied the dynamic behavior of mistuned bladed disks by using ROMs. Many of these techniques rely on the fact that the modes of a mistuned system can be approximated by a linear combination of modes of the corresponding tuned system. In addition, the tuned system modes have been modeled in component mode mistuning by using modal participation factors of cantilevered blade modes. Such techniques assume that mistuning can be well modeled as variations in blade-alone frequencies. However, since geometric deformations contain stiffness and mass variations, mistuning can no longer be captured by cantilevered blade modes alone. To address this, several studies have focused on large and small geometric mistuning. These studies exploited the difference between tuned (with perturbed geometry) and nominal tuned mode shapes. In this work, we extend on that approach and devote particular attention to the development of ROMs of bladed disks with small geometric mistuning. The methodology requires only sector-level calculations and therefore can be applied to highly refined, realistic models of industrial size.
    • Download: (3.632Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reduced-Order Models of Blisks With Small Geometric Mistuning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236259
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorBaek, Seunghun
    contributor authorEpureanu, Bogdan
    date accessioned2017-11-25T07:20:11Z
    date available2017-11-25T07:20:11Z
    date copyright2017/30/5
    date issued2017
    identifier issn1048-9002
    identifier othervib_139_04_041003.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236259
    description abstractA technique for generating reduced-order models (ROMs) of bladed disks with small geometric mistuning is proposed. Discrepancies in structural properties (mistuning) from blade to blade can cause a significant increase in the maximum vibratory stress. The effects of mistuning have been studied over the past few decades. Many researchers have studied the dynamic behavior of mistuned bladed disks by using ROMs. Many of these techniques rely on the fact that the modes of a mistuned system can be approximated by a linear combination of modes of the corresponding tuned system. In addition, the tuned system modes have been modeled in component mode mistuning by using modal participation factors of cantilevered blade modes. Such techniques assume that mistuning can be well modeled as variations in blade-alone frequencies. However, since geometric deformations contain stiffness and mass variations, mistuning can no longer be captured by cantilevered blade modes alone. To address this, several studies have focused on large and small geometric mistuning. These studies exploited the difference between tuned (with perturbed geometry) and nominal tuned mode shapes. In this work, we extend on that approach and devote particular attention to the development of ROMs of bladed disks with small geometric mistuning. The methodology requires only sector-level calculations and therefore can be applied to highly refined, realistic models of industrial size.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleReduced-Order Models of Blisks With Small Geometric Mistuning
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4036105
    journal fristpage41003
    journal lastpage041003-10
    treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian