YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fluid–Structure Interaction Simulation of Vortex-Induced Vibration of a Flexible Hydrofoil

    Source: Journal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004::page 41001
    Author:
    Lee, Abe H.
    ,
    Campbell, Robert L.
    ,
    Craven, Brent A.
    ,
    Hambric, Stephen A.
    DOI: 10.1115/1.4036453
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fluid–structure interaction (FSI) is investigated in this study for vortex-induced vibration (VIV) of a flexible, backward skewed hydrofoil. An in-house finite element structural solver finite element analysis nonlinear (FEANL) is tightly coupled with the open-source computational fluid dynamics (CFD) library openfoam to simulate the interaction of a flexible hydrofoil with vortical flow structures shed from a large upstream rigid cylinder. To simulate the turbulent flow at a moderate computational cost, hybrid Reynolds-averaged Navier–Stokes–large eddy simulation (RANS–LES) is used. Simulations are first performed to investigate key modeling aspects that include the influence of CFD mesh resolution and topology (structured versus unstructured mesh), time-step size, and turbulence model (delayed-detached-eddy-simulation and k−ω shear stress transport-scale adaptive simulation). Final FSI simulations are then performed and compared against experimental data acquired from the Penn State-ARL 12 in water tunnel at two flow conditions, 2.5 m/s and 3.0 m/s, corresponding to Reynolds numbers of 153,000 and 184,000 (based on the cylinder diameter), respectively. Comparisons of the hydrofoil tip-deflections, reaction forces, and velocity fields (contours and profiles) show reasonable agreement between the tightly coupled FSI simulations and experiments. The primary motivation of this study is to assess the capability of a tightly coupled FSI approach to model such a problem and to provide modeling guidance for future FSI simulations of rotating propellers in crashback (reverse propeller operation).
    • Download: (5.103Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fluid–Structure Interaction Simulation of Vortex-Induced Vibration of a Flexible Hydrofoil

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236257
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorLee, Abe H.
    contributor authorCampbell, Robert L.
    contributor authorCraven, Brent A.
    contributor authorHambric, Stephen A.
    date accessioned2017-11-25T07:20:11Z
    date available2017-11-25T07:20:11Z
    date copyright2017/30/5
    date issued2017
    identifier issn1048-9002
    identifier othervib_139_04_041001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236257
    description abstractFluid–structure interaction (FSI) is investigated in this study for vortex-induced vibration (VIV) of a flexible, backward skewed hydrofoil. An in-house finite element structural solver finite element analysis nonlinear (FEANL) is tightly coupled with the open-source computational fluid dynamics (CFD) library openfoam to simulate the interaction of a flexible hydrofoil with vortical flow structures shed from a large upstream rigid cylinder. To simulate the turbulent flow at a moderate computational cost, hybrid Reynolds-averaged Navier–Stokes–large eddy simulation (RANS–LES) is used. Simulations are first performed to investigate key modeling aspects that include the influence of CFD mesh resolution and topology (structured versus unstructured mesh), time-step size, and turbulence model (delayed-detached-eddy-simulation and k−ω shear stress transport-scale adaptive simulation). Final FSI simulations are then performed and compared against experimental data acquired from the Penn State-ARL 12 in water tunnel at two flow conditions, 2.5 m/s and 3.0 m/s, corresponding to Reynolds numbers of 153,000 and 184,000 (based on the cylinder diameter), respectively. Comparisons of the hydrofoil tip-deflections, reaction forces, and velocity fields (contours and profiles) show reasonable agreement between the tightly coupled FSI simulations and experiments. The primary motivation of this study is to assess the capability of a tightly coupled FSI approach to model such a problem and to provide modeling guidance for future FSI simulations of rotating propellers in crashback (reverse propeller operation).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFluid–Structure Interaction Simulation of Vortex-Induced Vibration of a Flexible Hydrofoil
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4036453
    journal fristpage41001
    journal lastpage041001-12
    treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian