YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Bistable Cantilevers Actuated by Fringing Electrostatic Fields

    Source: Journal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004::page 40908
    Author:
    Krakover, Naftaly
    ,
    Krylov, Slava
    DOI: 10.1115/1.4036625
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Bistable microstructures are distinguished by their ability to stay in two different stable configurations at the same loading. They manifest rich behavior and are advantageous in applications such as switches, nonvolatile memories, and sensors. Bistability of initially curved or buckled double-clamped beams, curved plates, and shells is associated with mechanical geometric nonlinearity appearing due to coupling between bending and compressive axial/in-plane stress. The bistable behavior is achieved by using a combination of carefully tailored initial shape and constrained boundaries. However, these statically indeterminate structures suffer from high sensitivity to temperature and residual stress. In this work, we show using the model that by combining electrostatic actuation by fringing fields with direct transversal forcing by a parallel-plate electrode or piezoelectric (PZT) transducer, bistable behavior can be obtained in a simple cantilever structure distinguished by robustness and low thermal sensitivity. Reduced-order model of the cantilever was built using Galerkin decomposition, the electrostatic force was obtained by means of three-dimensional (3D) finite elements (FEs) modeling. We also demonstrate that operation of the device in the vicinity of the bistability threshold may enhance the frequency sensitivity of the cantilever to loading. This sensitivity-enhancement approach may have applications in a broad range of resonant microelectromechanical inertial, force, mass, and biosensors as well as in atomic force microscopy (AFM).
    • Download: (1.853Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Bistable Cantilevers Actuated by Fringing Electrostatic Fields

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236255
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorKrakover, Naftaly
    contributor authorKrylov, Slava
    date accessioned2017-11-25T07:20:11Z
    date available2017-11-25T07:20:11Z
    date copyright2017/30/5
    date issued2017
    identifier issn1048-9002
    identifier othervib_139_04_040908.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236255
    description abstractBistable microstructures are distinguished by their ability to stay in two different stable configurations at the same loading. They manifest rich behavior and are advantageous in applications such as switches, nonvolatile memories, and sensors. Bistability of initially curved or buckled double-clamped beams, curved plates, and shells is associated with mechanical geometric nonlinearity appearing due to coupling between bending and compressive axial/in-plane stress. The bistable behavior is achieved by using a combination of carefully tailored initial shape and constrained boundaries. However, these statically indeterminate structures suffer from high sensitivity to temperature and residual stress. In this work, we show using the model that by combining electrostatic actuation by fringing fields with direct transversal forcing by a parallel-plate electrode or piezoelectric (PZT) transducer, bistable behavior can be obtained in a simple cantilever structure distinguished by robustness and low thermal sensitivity. Reduced-order model of the cantilever was built using Galerkin decomposition, the electrostatic force was obtained by means of three-dimensional (3D) finite elements (FEs) modeling. We also demonstrate that operation of the device in the vicinity of the bistability threshold may enhance the frequency sensitivity of the cantilever to loading. This sensitivity-enhancement approach may have applications in a broad range of resonant microelectromechanical inertial, force, mass, and biosensors as well as in atomic force microscopy (AFM).
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBistable Cantilevers Actuated by Fringing Electrostatic Fields
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4036625
    journal fristpage40908
    journal lastpage040908-10
    treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian