YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Vibration and Acoustics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Pantograph/Catenary Contact Formulations

    Source: Journal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 001::page 11010
    Author:
    Kulkarni, Shubhankar
    ,
    Pappalardo, Carmine M.
    ,
    Shabana, Ahmed A.
    DOI: 10.1115/1.4035132
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this investigation, the pantograph/catenary contact is examined using two different formulations. The first is an elastic contact formulation that allows for the catenary/panhead separation and for the analysis of the effect of the aerodynamic forces, while the second approach is based on a constraint formulation that does not allow for such a separation by eliminating the freedom of relative translation in two directions at the catenary/panhead contact point. In this study, the catenary system, including the contact and messenger wires, is modeled using the nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF) and flexible multibody system (MBS) algorithms. The generalized aerodynamic forces associated with the ANCF position and gradient coordinates and the pantograph reference coordinates are formulated. The new elastic contact formulation used in this investigation is derived from the constraint-based sliding joint formulation previously proposed by the authors. By using a unilateral penalty force approach, separation of the catenary and panhead is permitted, thereby allowing for better evaluating the response of the pantograph/catenary system to wind loading. In this elastic contact approach, the panhead is assumed to have six degrees-of-freedom with respect to the catenary. The coordinate system at the pantograph/catenary contact point is chosen such that the contact model developed in this study can be used with both the fully parameterized and gradient deficient ANCF elements. In order to develop a more realistic model, the MBS pantograph model is mounted on a detailed three-dimensional MBS rail-vehicle model. The wheel/rail contact is modeled using a nonlinear three-dimensional elastic contact formulation that accounts for the creep forces and spin moment. In order to examine the effect of the external aerodynamic forces on the pantograph/catenary interaction, two scenarios are considered in this investigation. In the first scenario, the crosswind loading is applied on the pantograph components only, while in the second scenario, the aerodynamic forces are applied on the pantograph components and also on the flexible catenary. For the configuration considered in this investigation, it was found that the crosswind assists the uplift force exerted on the pantograph mechanism, increasing the mean contact force value. Numerical results are presented in order to compare between the cases with and without the wind forces.
    • Download: (2.174Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Pantograph/Catenary Contact Formulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236192
    Collections
    • Journal of Vibration and Acoustics

    Show full item record

    contributor authorKulkarni, Shubhankar
    contributor authorPappalardo, Carmine M.
    contributor authorShabana, Ahmed A.
    date accessioned2017-11-25T07:20:06Z
    date available2017-11-25T07:20:06Z
    date copyright2016/21/11
    date issued2017
    identifier issn1048-9002
    identifier othervib_139_01_011010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236192
    description abstractIn this investigation, the pantograph/catenary contact is examined using two different formulations. The first is an elastic contact formulation that allows for the catenary/panhead separation and for the analysis of the effect of the aerodynamic forces, while the second approach is based on a constraint formulation that does not allow for such a separation by eliminating the freedom of relative translation in two directions at the catenary/panhead contact point. In this study, the catenary system, including the contact and messenger wires, is modeled using the nonlinear finite element (FE) absolute nodal coordinate formulation (ANCF) and flexible multibody system (MBS) algorithms. The generalized aerodynamic forces associated with the ANCF position and gradient coordinates and the pantograph reference coordinates are formulated. The new elastic contact formulation used in this investigation is derived from the constraint-based sliding joint formulation previously proposed by the authors. By using a unilateral penalty force approach, separation of the catenary and panhead is permitted, thereby allowing for better evaluating the response of the pantograph/catenary system to wind loading. In this elastic contact approach, the panhead is assumed to have six degrees-of-freedom with respect to the catenary. The coordinate system at the pantograph/catenary contact point is chosen such that the contact model developed in this study can be used with both the fully parameterized and gradient deficient ANCF elements. In order to develop a more realistic model, the MBS pantograph model is mounted on a detailed three-dimensional MBS rail-vehicle model. The wheel/rail contact is modeled using a nonlinear three-dimensional elastic contact formulation that accounts for the creep forces and spin moment. In order to examine the effect of the external aerodynamic forces on the pantograph/catenary interaction, two scenarios are considered in this investigation. In the first scenario, the crosswind loading is applied on the pantograph components only, while in the second scenario, the aerodynamic forces are applied on the pantograph components and also on the flexible catenary. For the configuration considered in this investigation, it was found that the crosswind assists the uplift force exerted on the pantograph mechanism, increasing the mean contact force value. Numerical results are presented in order to compare between the cases with and without the wind forces.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePantograph/Catenary Contact Formulations
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Vibration and Acoustics
    identifier doi10.1115/1.4035132
    journal fristpage11010
    journal lastpage011010-12
    treeJournal of Vibration and Acoustics:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian