YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002::page 21003
    Author:
    Hale, Lawrence
    ,
    Patil, Mayuresh
    ,
    Roy, Christopher J.
    DOI: 10.1115/1.4037004
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.
    • Download: (358.6Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Sensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236170
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorHale, Lawrence
    contributor authorPatil, Mayuresh
    contributor authorRoy, Christopher J.
    date accessioned2017-11-25T07:20:01Z
    date available2017-11-25T07:20:01Z
    date copyright2017/20/6
    date issued2017
    identifier issn2377-2158
    identifier othervvuq_002_02_021003.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236170
    description abstractThis paper examines various sensitivity analysis methods which can be used to determine the relative importance of input epistemic uncertainties on the uncertainty quantified performance estimate. The results from such analyses would then indicate which input uncertainties would merit additional study. The following existing sensitivity analysis methods are examined and described: local sensitivity analysis by finite difference, scatter plot analysis, variance-based analysis, and p-box-based analysis. As none of these methods are ideally suited for analysis of dynamic systems with epistemic uncertainty, an alternate method is proposed. This method uses aspects of both local sensitivity analysis and p-box-based analysis to provide improved computational speed while removing dependence on the assumed nominal model parameters.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSensitivity of Input Epistemic Uncertainty on Nondeterministic Performance Estimates Using Nondeterministic Simulations
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4037004
    journal fristpage21003
    journal lastpage021003-7
    treeJournal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian