YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Benchmark Experiments for Steady-State Natural Convection in Fuel Rod Bundles

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002::page 21001
    Author:
    Jones, Kyle L.
    ,
    Smith, Barton L.
    DOI: 10.1115/1.4036496
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Natural convection is a phenomenon in which fluid flow surrounding a body is induced by a change in density due to the temperature difference between the body and fluid. After removal from the pressurized water reactor (PWR), decay heat is removed from nuclear fuel bundles by natural convection in spent fuel pools for up to several years. Once the fuel bundles have cooled sufficiently, they are removed from fuel pools and placed in dry storage casks for long-term disposal. Little is known about the convective effects that occur inside the rod bundles under dry-storage conditions. Simulations may provide further insight into spent-fuel dry storage, but the models used must be evaluated to determine their accuracy using validation methods. The present study investigates natural convection in a 2 × 2 fuel rod model in order to provide validation data. The four heated aluminum rods are suspended in an open-circuit wind tunnel. Boundary conditions (BCs) have been measured and uncertainties calculated to provide necessary quantities to successfully conduct a validation exercise. System response quantities (SRQs) have been measured for comparing the simulation output to the experiment. Stereoscopic particle image velocimetry (SPIV) was used to nonintrusively measure three-component velocity fields. Two constant-heat-flux rod surface conditions are presented, 400 W/m2 and 700 W/m2, resulting in Rayleigh numbers of 4.5 × 109 and 5.5 × 109 and Reynolds numbers of 3450 and 4600, respectively. Uncertainty for all the measured variables is reported.
    • Download: (4.150Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Benchmark Experiments for Steady-State Natural Convection in Fuel Rod Bundles

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236168
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorJones, Kyle L.
    contributor authorSmith, Barton L.
    date accessioned2017-11-25T07:20:01Z
    date available2017-11-25T07:20:01Z
    date copyright2017/22/5
    date issued2017
    identifier issn2377-2158
    identifier othervvuq_002_02_021001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236168
    description abstractNatural convection is a phenomenon in which fluid flow surrounding a body is induced by a change in density due to the temperature difference between the body and fluid. After removal from the pressurized water reactor (PWR), decay heat is removed from nuclear fuel bundles by natural convection in spent fuel pools for up to several years. Once the fuel bundles have cooled sufficiently, they are removed from fuel pools and placed in dry storage casks for long-term disposal. Little is known about the convective effects that occur inside the rod bundles under dry-storage conditions. Simulations may provide further insight into spent-fuel dry storage, but the models used must be evaluated to determine their accuracy using validation methods. The present study investigates natural convection in a 2 × 2 fuel rod model in order to provide validation data. The four heated aluminum rods are suspended in an open-circuit wind tunnel. Boundary conditions (BCs) have been measured and uncertainties calculated to provide necessary quantities to successfully conduct a validation exercise. System response quantities (SRQs) have been measured for comparing the simulation output to the experiment. Stereoscopic particle image velocimetry (SPIV) was used to nonintrusively measure three-component velocity fields. Two constant-heat-flux rod surface conditions are presented, 400 W/m2 and 700 W/m2, resulting in Rayleigh numbers of 4.5 × 109 and 5.5 × 109 and Reynolds numbers of 3450 and 4600, respectively. Uncertainty for all the measured variables is reported.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleBenchmark Experiments for Steady-State Natural Convection in Fuel Rod Bundles
    typeJournal Paper
    journal volume2
    journal issue2
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4036496
    journal fristpage21001
    journal lastpage021001-13
    treeJournal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian