YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Verification, Validation and Uncertainty Quantification
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Multiscale Validation and Uncertainty Quantification for Problems With Sparse Data

    Source: Journal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 001::page 11001
    Author:
    Jatale, Anchal
    ,
    Smith, Philip J.
    ,
    Thornock, Jeremy N.
    ,
    Smith, Sean T.
    ,
    Spinti, Jennifer P.
    ,
    Hradisky, Michal
    DOI: 10.1115/1.4035864
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Quantification of uncertainty in the simulation results becomes difficult for complex real-world systems with little or no experimental data. This paper describes a validation and uncertainty quantification (VUQ) approach that integrates computational and experimental data through a range of experimental scales and a hierarchy of complexity levels. This global approach links dissimilar experimental datasets at different scales, in a hierarchy, to reduce quantified error bars on case with sparse data, without running additional experiments. This approach was demonstrated by applying on a real-world problem, greenhouse gas (GHG) emissions from wind tunnel flares. The two-tier validation hierarchy links, a buoyancy-driven helium plume and a wind tunnel flare, to increase the confidence in the estimation of GHG emissions from wind tunnel flares from simulations.
    • Download: (1.557Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Multiscale Validation and Uncertainty Quantification for Problems With Sparse Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236161
    Collections
    • Journal of Verification, Validation and Uncertainty Quantification

    Show full item record

    contributor authorJatale, Anchal
    contributor authorSmith, Philip J.
    contributor authorThornock, Jeremy N.
    contributor authorSmith, Sean T.
    contributor authorSpinti, Jennifer P.
    contributor authorHradisky, Michal
    date accessioned2017-11-25T07:20:00Z
    date available2017-11-25T07:20:00Z
    date copyright2017/9/2
    date issued2017
    identifier issn2377-2158
    identifier othervvuq_002_01_011001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236161
    description abstractQuantification of uncertainty in the simulation results becomes difficult for complex real-world systems with little or no experimental data. This paper describes a validation and uncertainty quantification (VUQ) approach that integrates computational and experimental data through a range of experimental scales and a hierarchy of complexity levels. This global approach links dissimilar experimental datasets at different scales, in a hierarchy, to reduce quantified error bars on case with sparse data, without running additional experiments. This approach was demonstrated by applying on a real-world problem, greenhouse gas (GHG) emissions from wind tunnel flares. The two-tier validation hierarchy links, a buoyancy-driven helium plume and a wind tunnel flare, to increase the confidence in the estimation of GHG emissions from wind tunnel flares from simulations.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMultiscale Validation and Uncertainty Quantification for Problems With Sparse Data
    typeJournal Paper
    journal volume2
    journal issue1
    journal titleJournal of Verification, Validation and Uncertainty Quantification
    identifier doi10.1115/1.4035864
    journal fristpage11001
    journal lastpage011001-10
    treeJournal of Verification, Validation and Uncertainty Quantification:;2017:;volume( 002 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian