YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Novel Suction-Side Winglet Design Philosophy for High-Pressure Turbine Rotor Tips

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 011::page 111002
    Author:
    Zhou, Chao
    ,
    Zhong, Fangpan
    DOI: 10.1115/1.4037056
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Winglet tips are promising candidates for future high-pressure turbine rotors. Many studies found that the design of the suction-side winglet is the key to the aerodynamic performance of a winglet tip, but there is no general agreement on the exact design philosophy. In this paper, a novel suction-side winglet design philosophy in a turbine cascade is introduced. The winglets are obtained based on the near-tip flow field of the datum tip geometry. The suction-side winglet aims to reduce the tip leakage flow particularly in the front part of the blade passage. It is found that on the casing endwall, the pressure increases in the area where the winglet is used. This reduces the tip leakage flow in the front part of the blade passage and the pitchwise pressure gradient on the endwall. As a result, the size of the tip leakage vortex reduces. A surprising observation is that the novel optimized winglet tip design eliminates the passage vortex and results in a further increasing of the efficiency. The tip leakage loss of the novel winglet tip is 18.1% lower than the datum cavity tip, with an increase of tip surface area by only 19.3%. The spanwise deflection of the winglet due to the centrifugal force is small. The tip heat load of the winglet tip is 17.5% higher than that of the cavity tip. Numerical simulation shows that in a turbine stage, this winglet tip increases the turbine stage efficiency by 0.9% mainly by eliminating the loss caused by the passage vortex at a tip gap size of 1.4% chord compared with a cavity tip.
    • Download: (4.366Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Novel Suction-Side Winglet Design Philosophy for High-Pressure Turbine Rotor Tips

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236127
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorZhou, Chao
    contributor authorZhong, Fangpan
    date accessioned2017-11-25T07:19:58Z
    date available2017-11-25T07:19:58Z
    date copyright2017/19/7
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_11_111002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236127
    description abstractWinglet tips are promising candidates for future high-pressure turbine rotors. Many studies found that the design of the suction-side winglet is the key to the aerodynamic performance of a winglet tip, but there is no general agreement on the exact design philosophy. In this paper, a novel suction-side winglet design philosophy in a turbine cascade is introduced. The winglets are obtained based on the near-tip flow field of the datum tip geometry. The suction-side winglet aims to reduce the tip leakage flow particularly in the front part of the blade passage. It is found that on the casing endwall, the pressure increases in the area where the winglet is used. This reduces the tip leakage flow in the front part of the blade passage and the pitchwise pressure gradient on the endwall. As a result, the size of the tip leakage vortex reduces. A surprising observation is that the novel optimized winglet tip design eliminates the passage vortex and results in a further increasing of the efficiency. The tip leakage loss of the novel winglet tip is 18.1% lower than the datum cavity tip, with an increase of tip surface area by only 19.3%. The spanwise deflection of the winglet due to the centrifugal force is small. The tip heat load of the winglet tip is 17.5% higher than that of the cavity tip. Numerical simulation shows that in a turbine stage, this winglet tip increases the turbine stage efficiency by 0.9% mainly by eliminating the loss caused by the passage vortex at a tip gap size of 1.4% chord compared with a cavity tip.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Novel Suction-Side Winglet Design Philosophy for High-Pressure Turbine Rotor Tips
    typeJournal Paper
    journal volume139
    journal issue11
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4037056
    journal fristpage111002
    journal lastpage111002-11
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian