YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mach Number Distribution and Profile Losses for Low-Pressure Turbine Profiles With High Diffusion Factors

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 010::page 101002
    Author:
    Brachmanski, Roland
    ,
    Niehuis, Reinhard
    DOI: 10.1115/1.4036436
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The results of this investigation come from two linear cascades at high diffusion factors (DFs). The measurements presented for each low-pressure turbine (LPT) profile were conducted at midspan under a range of Reynolds- and exit Mach numbers. The exit Mach number was varied in a range covering low subsonic up to values where a transonic flow regime on the suction side of the blade could be expected. This work focuses on two profiles with a diffusion factor in a range of 0.18≤DF≤0.22, where values in this range are considered as a comparable for the two cascades. Profile A is a front-loaded design and has shown no obvious flow separation on the suction side of the blade. Compared to the design A, design B is a more aft-loaded profile which exhibits flow separation on the suction side for all Reynolds numbers investigated. The integral total pressure losses were evaluated by wake traverses downstream of the airfoil. To determine the isentropic Mach numbers and the character of the boundary layer along the suction side of the profile, the static pressure measurements and traverses with a flattened Pitot probe were carried out. A correlation between the position of maximum Mach number on the suction side and the integral total pressure losses has been successfully established. The results show that the optimum location of peak Mach number to minimize integral total pressure losses is significantly dependent on the Reynolds number. However, the correlation presented in this paper, which is based on the data of the integral total pressure losses of an attached boundary layer, is not able to predict the integral total pressure loss or the location of the maximum Mach number on the suction side of the blade when an open separation bubble occurs.
    • Download: (1.094Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mach Number Distribution and Profile Losses for Low-Pressure Turbine Profiles With High Diffusion Factors

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236114
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorBrachmanski, Roland
    contributor authorNiehuis, Reinhard
    date accessioned2017-11-25T07:19:56Z
    date available2017-11-25T07:19:56Z
    date copyright2017/9/5
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_10_101002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236114
    description abstractThe results of this investigation come from two linear cascades at high diffusion factors (DFs). The measurements presented for each low-pressure turbine (LPT) profile were conducted at midspan under a range of Reynolds- and exit Mach numbers. The exit Mach number was varied in a range covering low subsonic up to values where a transonic flow regime on the suction side of the blade could be expected. This work focuses on two profiles with a diffusion factor in a range of 0.18≤DF≤0.22, where values in this range are considered as a comparable for the two cascades. Profile A is a front-loaded design and has shown no obvious flow separation on the suction side of the blade. Compared to the design A, design B is a more aft-loaded profile which exhibits flow separation on the suction side for all Reynolds numbers investigated. The integral total pressure losses were evaluated by wake traverses downstream of the airfoil. To determine the isentropic Mach numbers and the character of the boundary layer along the suction side of the profile, the static pressure measurements and traverses with a flattened Pitot probe were carried out. A correlation between the position of maximum Mach number on the suction side and the integral total pressure losses has been successfully established. The results show that the optimum location of peak Mach number to minimize integral total pressure losses is significantly dependent on the Reynolds number. However, the correlation presented in this paper, which is based on the data of the integral total pressure losses of an attached boundary layer, is not able to predict the integral total pressure loss or the location of the maximum Mach number on the suction side of the blade when an open separation bubble occurs.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMach Number Distribution and Profile Losses for Low-Pressure Turbine Profiles With High Diffusion Factors
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4036436
    journal fristpage101002
    journal lastpage101002-10
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian