YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 009::page 91005
    Author:
    Prenter, Robin
    ,
    Ameri, Ali
    ,
    Bons, Jeffrey P.
    DOI: 10.1115/1.4036008
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Ash particle deposition in a high-pressure turbine stage was numerically investigated using steady Reynolds-averaged Navier-Stokes (RANS) and unsteady Reynolds-averaged Navie-Stokes (URANS) methods. An inlet temperature profile consisting of Gaussian nonuniformities (hot streaks) was imposed on the vanes, with vane cooling simulated using a constant vane wall temperature. The steady case utilized a mixing plane at the vane–rotor interface, while a sliding mesh was used for the unsteady case. Corrected speed and mass flow were matched to an experiment involving the same geometry, so that the flow solution could be validated against measurements. Particles ranging from 1 to 65 μm were introduced into the vane domain, and tracked using an Eulerian–Lagrangian tracking model. A novel particle rebound and deposition model was employed to determine particles' stick/bounce behavior upon impact with a surface. Predicted impact and capture distributions for different diameters were compared between the steady and unsteady methods, highlighting effects from the circumferential averaging of the mixing plane. The mixing plane simulation was found to generally under predict impact and capture efficiencies compared with the unsteady calculation, as well as under predict particle temperature upon impact with the blade surface. Quantitative impact and capture efficiency trends with the Stokes number are discussed for both the vane and blade, with companion qualitative distributions for the different Stokes regimes.
    • Download: (2.625Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236104
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorPrenter, Robin
    contributor authorAmeri, Ali
    contributor authorBons, Jeffrey P.
    date accessioned2017-11-25T07:19:55Z
    date available2017-11-25T07:19:55Z
    date copyright2017/11/4
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_09_091005.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236104
    description abstractAsh particle deposition in a high-pressure turbine stage was numerically investigated using steady Reynolds-averaged Navier-Stokes (RANS) and unsteady Reynolds-averaged Navie-Stokes (URANS) methods. An inlet temperature profile consisting of Gaussian nonuniformities (hot streaks) was imposed on the vanes, with vane cooling simulated using a constant vane wall temperature. The steady case utilized a mixing plane at the vane–rotor interface, while a sliding mesh was used for the unsteady case. Corrected speed and mass flow were matched to an experiment involving the same geometry, so that the flow solution could be validated against measurements. Particles ranging from 1 to 65 μm were introduced into the vane domain, and tracked using an Eulerian–Lagrangian tracking model. A novel particle rebound and deposition model was employed to determine particles' stick/bounce behavior upon impact with a surface. Predicted impact and capture distributions for different diameters were compared between the steady and unsteady methods, highlighting effects from the circumferential averaging of the mixing plane. The mixing plane simulation was found to generally under predict impact and capture efficiencies compared with the unsteady calculation, as well as under predict particle temperature upon impact with the blade surface. Quantitative impact and capture efficiency trends with the Stokes number are discussed for both the vane and blade, with companion qualitative distributions for the different Stokes regimes.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Simulation of Deposition in a Cooled High-Pressure Turbine Stage With Hot Streaks
    typeJournal Paper
    journal volume139
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4036008
    journal fristpage91005
    journal lastpage091005-11
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian