YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Secondary Flow Control in Low Aspect Ratio Vanes Using Splitters

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 009::page 91003
    Author:
    Clark, Christopher J.
    ,
    Pullan, Graham
    ,
    Curtis, Eric
    ,
    Goenaga, Frederic
    DOI: 10.1115/1.4036190
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Low aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high end-wall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy (SKE) of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet end-wall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent current practice for a low aspect ratio vane, a design exempt from thickness constraints, and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitter geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flow field was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.
    • Download: (7.063Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Secondary Flow Control in Low Aspect Ratio Vanes Using Splitters

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236102
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorClark, Christopher J.
    contributor authorPullan, Graham
    contributor authorCurtis, Eric
    contributor authorGoenaga, Frederic
    date accessioned2017-11-25T07:19:55Z
    date available2017-11-25T07:19:55Z
    date copyright2017/11/4
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_09_091003.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236102
    description abstractLow aspect ratio vanes, often the result of overall engine architecture constraints, create strong secondary flows and high end-wall loss. In this paper, a splitter concept is demonstrated that reduces secondary flow strength and improves stage performance. An analytic conceptual study, corroborated by inviscid computations, shows that the total secondary kinetic energy (SKE) of the secondary flow vortices is reduced when the number of passages is increased and, for a given number of vanes, when the inlet end-wall boundary layer is evenly distributed between the passages. Viscous computations show that, for this to be achieved in a splitter configuration, the pressure-side leg of the low aspect ratio vane horseshoe vortex, must enter the adjacent passage (and not “jump” in front of the splitter leading edge). For a target turbine application, four vane designs were produced using a multi-objective optimization approach. These designs represent current practice for a low aspect ratio vane, a design exempt from thickness constraints, and two designs incorporating splitter vanes. Each geometry is tested experimentally, as a sector, within a low-speed turbine stage. The vane designs with splitter geometries were found to reduce the measured secondary kinetic energy, by up to 85%, to a value similar to the design exempt from thickness constraints. The resulting flow field was also more uniform in both the circumferential and radial directions. One splitter design was selected for a full annulus test where a mixed-out loss reduction, compared to the current practice design, of 15.3% was measured and the stage efficiency increased by 0.88%.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSecondary Flow Control in Low Aspect Ratio Vanes Using Splitters
    typeJournal Paper
    journal volume139
    journal issue9
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4036190
    journal fristpage91003
    journal lastpage091003-11
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian