YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Investigations of Flutter and Aerodynamic Damping of a Turbine Blade: Experimental Characterization

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 008::page 81011
    Author:
    Seeley, Charles E.
    ,
    Wakelam, Christian
    ,
    Zhang, Xuefeng
    ,
    Hofer, Douglas
    ,
    Ren, Wei-Min
    DOI: 10.1115/1.4035840
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flutter is a self-excited and self-sustained aero-elastic instability, caused by the positive feedback between structural vibration and aerodynamic forces. A two-passage linear turbine cascade was designed, built, and tested to better understand the phenomena and collect data to validate numerical models. The cascade featured a center airfoil that had its pitch axis as a degree-of-freedom to enable coupling between the air flow and mechanical response in a controlled manner. The airfoil was designed to be excited about its pitch axis using an electromagnetic actuation system over a range of frequencies and amplitudes. The excitation force was measured with load cells, and the airfoil motion was measured with accelerometers. Extraordinary effort was taken to minimize the mechanical damping so that the damping effects of the airflow over the airfoil, that were of primary interest, would be observable. Assembling the cascade required specialized alignment procedures due to the tight clearances and large motion. The aerodynamic damping effects were determined by observing changes in the mechanical frequency response of the system. Detailed aerodynamic and mechanical measurements were conducted within a wide range of Mach numbers (Ma) from Ma = 0.10 to 1.20. Experimental results indicated that the aerodynamic damping increased from Ma = 0.10 to 0.65, dropped suddenly, and was then constant from Ma = 0.80 to 1.20. A flutter condition was identified in the interval between Ma = 0.65 and Ma = 0.80. The aerodynamic damping was also found to be independent of displacement amplitude within the tested range, giving credence to linear numerical approaches.
    • Download: (1.780Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Investigations of Flutter and Aerodynamic Damping of a Turbine Blade: Experimental Characterization

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236099
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorSeeley, Charles E.
    contributor authorWakelam, Christian
    contributor authorZhang, Xuefeng
    contributor authorHofer, Douglas
    contributor authorRen, Wei-Min
    date accessioned2017-11-25T07:19:54Z
    date available2017-11-25T07:19:54Z
    date copyright2017/4/4
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_08_081011.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236099
    description abstractFlutter is a self-excited and self-sustained aero-elastic instability, caused by the positive feedback between structural vibration and aerodynamic forces. A two-passage linear turbine cascade was designed, built, and tested to better understand the phenomena and collect data to validate numerical models. The cascade featured a center airfoil that had its pitch axis as a degree-of-freedom to enable coupling between the air flow and mechanical response in a controlled manner. The airfoil was designed to be excited about its pitch axis using an electromagnetic actuation system over a range of frequencies and amplitudes. The excitation force was measured with load cells, and the airfoil motion was measured with accelerometers. Extraordinary effort was taken to minimize the mechanical damping so that the damping effects of the airflow over the airfoil, that were of primary interest, would be observable. Assembling the cascade required specialized alignment procedures due to the tight clearances and large motion. The aerodynamic damping effects were determined by observing changes in the mechanical frequency response of the system. Detailed aerodynamic and mechanical measurements were conducted within a wide range of Mach numbers (Ma) from Ma = 0.10 to 1.20. Experimental results indicated that the aerodynamic damping increased from Ma = 0.10 to 0.65, dropped suddenly, and was then constant from Ma = 0.80 to 1.20. A flutter condition was identified in the interval between Ma = 0.65 and Ma = 0.80. The aerodynamic damping was also found to be independent of displacement amplitude within the tested range, giving credence to linear numerical approaches.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleInvestigations of Flutter and Aerodynamic Damping of a Turbine Blade: Experimental Characterization
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4035840
    journal fristpage81011
    journal lastpage081011-7
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian