YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Endwall Loss in Turbine Cascades

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 008::page 81004
    Author:
    Coull, John D.
    DOI: 10.1115/1.4035663
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Prior to the detailed design of components, turbomachinery engineers must guide a mean-line or throughflow design toward an optimum configuration. This process requires a combination of informed judgement and low-order correlations for the principle sources of loss. With these requirements in mind, this paper examines the impact of key design parameters on endwall loss in turbines, a problem which remains poorly understood. This paper presents a parametric study of linear cascades, which represent a simplified model of real-engine flow. The designs are nominally representative of the low-pressure turbine blades of an aero-engine, with varying flow angles, blade thickness, and suction surface lift styles. Reynolds-averaged Navier–Stokes (RANS) calculations are performed for a single aspect ratio (AR) and constant inlet boundary layer thickness. To characterize the cascades studied, the two-dimensional design space is examined before studying endwall losses in detail. It is demonstrated that endwall loss can be decomposed into two components: one due to the dissipation associated with the endwall boundary layer and another induced by the secondary flows. This secondary-flow-induced loss is found to scale with a measure of streamwise vorticity predicted by classical secondary flow theory.
    • Download: (4.683Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Endwall Loss in Turbine Cascades

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236091
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCoull, John D.
    date accessioned2017-11-25T07:19:54Z
    date available2017-11-25T07:19:54Z
    date copyright2017/15/3
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_08_081004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236091
    description abstractPrior to the detailed design of components, turbomachinery engineers must guide a mean-line or throughflow design toward an optimum configuration. This process requires a combination of informed judgement and low-order correlations for the principle sources of loss. With these requirements in mind, this paper examines the impact of key design parameters on endwall loss in turbines, a problem which remains poorly understood. This paper presents a parametric study of linear cascades, which represent a simplified model of real-engine flow. The designs are nominally representative of the low-pressure turbine blades of an aero-engine, with varying flow angles, blade thickness, and suction surface lift styles. Reynolds-averaged Navier–Stokes (RANS) calculations are performed for a single aspect ratio (AR) and constant inlet boundary layer thickness. To characterize the cascades studied, the two-dimensional design space is examined before studying endwall losses in detail. It is demonstrated that endwall loss can be decomposed into two components: one due to the dissipation associated with the endwall boundary layer and another induced by the secondary flows. This secondary-flow-induced loss is found to scale with a measure of streamwise vorticity predicted by classical secondary flow theory.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEndwall Loss in Turbine Cascades
    typeJournal Paper
    journal volume139
    journal issue8
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4035663
    journal fristpage81004
    journal lastpage081004-12
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian