YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Application of Film Cooling to an Unshrouded High-Pressure Turbine Casing

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 006::page 61010
    Author:
    Collins, Matthew
    ,
    Chana, Kamaljit
    ,
    Povey, Thomas
    DOI: 10.1115/1.4035276
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we describe the design, modeling, and experimental testing of a film cooling scheme employed on an unshrouded high-pressure (HP) rotor casing. The casing region has high thermal loads at both low and high frequency, with the flow being dominated by the potential field of the rotor and over-tip leakage flows. Increasingly high turbine entry temperatures necessitate internal and film cooling of the casing to ensure satisfactory service life and performance. There are, however, very few published studies presenting computational fluid dynamics (CFD) and experimental data for cooled rotor casings. Experimental testing was performed on a film-cooled rotor casing in the Oxford Turbine Research Facility (OTRF)—a rotating transonic facility of engine scale. Unsteady CFD of an HP rotor blade row with a film-cooled casing was undertaken, uniquely with a domain utilizing a sliding interface in the tip gap. A high density array of thin film heat flux gauges (TFHFGs) was used to obtain time-resolved and time-mean results of adiabatic wall temperature and film cooling effectiveness on the film-cooled rotor casing between −30% and +125% rotor tip axial chord. Results are compared to CFD predictions, and mechanisms for interaction of the coolant with the rotor tip are proposed and discussed. Acoustic effects within casing coolant holes due to the passing of the rotor are demonstrated on a 3D CFD geometry, supporting conclusions drawn in earlier work by the authors on the importance of this effect in a casing film cooling system.
    • Download: (5.254Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Application of Film Cooling to an Unshrouded High-Pressure Turbine Casing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236073
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorCollins, Matthew
    contributor authorChana, Kamaljit
    contributor authorPovey, Thomas
    date accessioned2017-11-25T07:19:52Z
    date available2017-11-25T07:19:52Z
    date copyright2017/7/2
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_06_061010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236073
    description abstractIn this paper, we describe the design, modeling, and experimental testing of a film cooling scheme employed on an unshrouded high-pressure (HP) rotor casing. The casing region has high thermal loads at both low and high frequency, with the flow being dominated by the potential field of the rotor and over-tip leakage flows. Increasingly high turbine entry temperatures necessitate internal and film cooling of the casing to ensure satisfactory service life and performance. There are, however, very few published studies presenting computational fluid dynamics (CFD) and experimental data for cooled rotor casings. Experimental testing was performed on a film-cooled rotor casing in the Oxford Turbine Research Facility (OTRF)—a rotating transonic facility of engine scale. Unsteady CFD of an HP rotor blade row with a film-cooled casing was undertaken, uniquely with a domain utilizing a sliding interface in the tip gap. A high density array of thin film heat flux gauges (TFHFGs) was used to obtain time-resolved and time-mean results of adiabatic wall temperature and film cooling effectiveness on the film-cooled rotor casing between −30% and +125% rotor tip axial chord. Results are compared to CFD predictions, and mechanisms for interaction of the coolant with the rotor tip are proposed and discussed. Acoustic effects within casing coolant holes due to the passing of the rotor are demonstrated on a 3D CFD geometry, supporting conclusions drawn in earlier work by the authors on the importance of this effect in a casing film cooling system.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleApplication of Film Cooling to an Unshrouded High-Pressure Turbine Casing
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4035276
    journal fristpage61010
    journal lastpage061010-12
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian