YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Development and Application of a Fast-Response Total Temperature Probe for Turbomachinery

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 005::page 51010
    Author:
    Arenz, Martin C.
    ,
    Weigel, Björn
    ,
    Habermann, Jan
    ,
    Staudacher, Stephan
    ,
    Rose, Martin G.
    ,
    Berns, Wolfgang
    ,
    Lutum, Ewald
    DOI: 10.1115/1.4035278
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The measurement of unsteady total temperature is of great interest for the examination of loss mechanisms in turbomachinery with respect to the improvement of the efficiency. Since conventional thermocouples are limited in frequency response, several fast-response total temperature probes have been developed over the past years. To improve the spatial resolution compared to these existing probes and maintaining a high temporal resolution, a new fast-response total temperature probe has been developed at the Institute of Aircraft Propulsion Systems (ILA), Stuttgart, Germany in cooperation with Berns Engineers, Gilching, Germany. The design of the probe allows a sensitive measuring surface below 1 mm2. A detailed insight into the design of the probe, the measurement principle, the calibration process, and an estimation of the measurement uncertainty is given in the present paper. Furthermore, to prove the functionality of the probe, first experimental results of a simple test bed and of area traverses downstream of the first rotor of a two-stage low pressure turbine are presented. It is shown, that the new probe is capable of detecting rotor characteristic effects as well as rotor-stator-interactions. In addition, a hot-spot is investigated downstream of the first rotor of the turbine, and the findings are compared to the effects known from the literature.
    • Download: (3.099Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Development and Application of a Fast-Response Total Temperature Probe for Turbomachinery

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236062
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorArenz, Martin C.
    contributor authorWeigel, Björn
    contributor authorHabermann, Jan
    contributor authorStaudacher, Stephan
    contributor authorRose, Martin G.
    contributor authorBerns, Wolfgang
    contributor authorLutum, Ewald
    date accessioned2017-11-25T07:19:51Z
    date available2017-11-25T07:19:51Z
    date copyright2017/24/1
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_05_051010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236062
    description abstractThe measurement of unsteady total temperature is of great interest for the examination of loss mechanisms in turbomachinery with respect to the improvement of the efficiency. Since conventional thermocouples are limited in frequency response, several fast-response total temperature probes have been developed over the past years. To improve the spatial resolution compared to these existing probes and maintaining a high temporal resolution, a new fast-response total temperature probe has been developed at the Institute of Aircraft Propulsion Systems (ILA), Stuttgart, Germany in cooperation with Berns Engineers, Gilching, Germany. The design of the probe allows a sensitive measuring surface below 1 mm2. A detailed insight into the design of the probe, the measurement principle, the calibration process, and an estimation of the measurement uncertainty is given in the present paper. Furthermore, to prove the functionality of the probe, first experimental results of a simple test bed and of area traverses downstream of the first rotor of a two-stage low pressure turbine are presented. It is shown, that the new probe is capable of detecting rotor characteristic effects as well as rotor-stator-interactions. In addition, a hot-spot is investigated downstream of the first rotor of the turbine, and the findings are compared to the effects known from the literature.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDevelopment and Application of a Fast-Response Total Temperature Probe for Turbomachinery
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4035278
    journal fristpage51010
    journal lastpage051010-9
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian