YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 005::page 51007
    Author:
    Stotz, Stephan
    ,
    Guendogdu, Yavuz
    ,
    Niehuis, Reinhard
    DOI: 10.1115/1.4035210
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The objective of this work is to study the influence of a pressure side separation bubble on the profile losses and the development of the bubble in the blade passage. For the experimental investigations, the T106 profile is used, with an increased loading due to an enlarged pitch to chord ratio from 0.799 to 0.95 (T106C). The experiments were performed at the high-speed cascade wind tunnel of the Institute of Jet Propulsion at the University of the Federal Armed Forces Munich. The main feature of the wind tunnel is to vary Reynolds and Mach number independently to achieve realistic turbomachinery conditions. The focus of this work is to determine the influence of a pressure side separation on the profile losses and hence the robustness to suction side incidence flow. The cascade is tested at four incidence angles from 0 deg to −22.7 deg to create separation bubbles of different sizes. The influence of the Reynolds number is investigated for a wide range at constant exit Mach number. Therefore, a typical exit Mach number for low pressure turbines in the range of 0.5–0.8 is chosen in order to consider compressible effects. Furthermore, two inlet turbulence levels of about 3% and 7.5% have been considered. The characteristics of the separation bubble are identified by using the profile pressure distributions, whereas wake traverses with a five hole probe are used to determine the influence of the pressure side separation on the profile losses. Further, time-resolved pressure measurements near the trailing edge as well as single hot wire measurements in the blade passage are conducted to investigate the unsteady behavior of the pressure side separation process itself and also its influence on the midspan passage flow.
    • Download: (1.585Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236059
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorStotz, Stephan
    contributor authorGuendogdu, Yavuz
    contributor authorNiehuis, Reinhard
    date accessioned2017-11-25T07:19:51Z
    date available2017-11-25T07:19:51Z
    date copyright2017/24/1
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_05_051007.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236059
    description abstractThe objective of this work is to study the influence of a pressure side separation bubble on the profile losses and the development of the bubble in the blade passage. For the experimental investigations, the T106 profile is used, with an increased loading due to an enlarged pitch to chord ratio from 0.799 to 0.95 (T106C). The experiments were performed at the high-speed cascade wind tunnel of the Institute of Jet Propulsion at the University of the Federal Armed Forces Munich. The main feature of the wind tunnel is to vary Reynolds and Mach number independently to achieve realistic turbomachinery conditions. The focus of this work is to determine the influence of a pressure side separation on the profile losses and hence the robustness to suction side incidence flow. The cascade is tested at four incidence angles from 0 deg to −22.7 deg to create separation bubbles of different sizes. The influence of the Reynolds number is investigated for a wide range at constant exit Mach number. Therefore, a typical exit Mach number for low pressure turbines in the range of 0.5–0.8 is chosen in order to consider compressible effects. Furthermore, two inlet turbulence levels of about 3% and 7.5% have been considered. The characteristics of the separation bubble are identified by using the profile pressure distributions, whereas wake traverses with a five hole probe are used to determine the influence of the pressure side separation on the profile losses. Further, time-resolved pressure measurements near the trailing edge as well as single hot wire measurements in the blade passage are conducted to investigate the unsteady behavior of the pressure side separation process itself and also its influence on the midspan passage flow.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental Investigation of Pressure Side Flow Separation on the T106C Airfoil at High Suction Side Incidence Flow
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4035210
    journal fristpage51007
    journal lastpage051007-11
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian