Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and OptimizationSource: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 004::page 41002DOI: 10.1115/1.4035045Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance, and hole inclination on the convective heat transfer performance of an impinging jet array. Spatially resolved target surface heat transfer coefficient distributions are measured using transient liquid crystal (TLC) measurement techniques, over a range of Reynolds numbers from 5000 to 25,000. Considered are effects of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3). Overall, a test matrix of 36 different configurations is employed. In addition, the effect of hole inclination (θ: 0–40 deg) on the heat transfer coefficient is investigated. Optimal hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D ∼ 0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool.
|
Collections
Show full item record
contributor author | Li, Weihong | |
contributor author | Li, Xueying | |
contributor author | Yang, Li | |
contributor author | Ren, Jing | |
contributor author | Jiang, Hongde | |
contributor author | Ligrani, Phillip | |
date accessioned | 2017-11-25T07:19:50Z | |
date available | 2017-11-25T07:19:50Z | |
date copyright | 2017/4/1 | |
date issued | 2017 | |
identifier issn | 0889-504X | |
identifier other | turbo_139_04_041002.pdf | |
identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4236044 | |
description abstract | This study comprehensively illustrates the effect of Reynolds number, hole spacing, jet-to-target distance, and hole inclination on the convective heat transfer performance of an impinging jet array. Spatially resolved target surface heat transfer coefficient distributions are measured using transient liquid crystal (TLC) measurement techniques, over a range of Reynolds numbers from 5000 to 25,000. Considered are effects of streamwise and spanwise jet-to-jet spacing (X/D, Y/D: 4–8) and jet-to-target plate distance (Z/D: 0.75–3). Overall, a test matrix of 36 different configurations is employed. In addition, the effect of hole inclination (θ: 0–40 deg) on the heat transfer coefficient is investigated. Optimal hole spacing arrangements and impingement distance are pointed out to maximize the area-averaged Nusselt number and minimize the amount of cooling air. Also included is a new correlation, based on that of Florschuetz et al., to predict row-averaged Nusselt number. The new correlation is capable to cover low Z/D ∼ 0.75 and presents better prediction of row-averaged Nusselt number, which proves to be an effective impingement design tool. | |
publisher | The American Society of Mechanical Engineers (ASME) | |
title | Effect of Reynolds Number, Hole Patterns, and Hole Inclination on Cooling Performance of an Impinging Jet Array—Part I: Convective Heat Transfer Results and Optimization | |
type | Journal Paper | |
journal volume | 139 | |
journal issue | 4 | |
journal title | Journal of Turbomachinery | |
identifier doi | 10.1115/1.4035045 | |
journal fristpage | 41002 | |
journal lastpage | 041002-11 | |
tree | Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 004 | |
contenttype | Fulltext |