YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Loss Mechanisms of Interplatform Steps in a 1.5-Stage Axial Flow Turbine

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 003::page 31007
    Author:
    Kluxen, Robert
    ,
    Behre, Stephan
    ,
    Jeschke, Peter
    ,
    Guendogdu, Yavuz
    DOI: 10.1115/1.4034848
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the detailed steady and unsteady numerical investigations of a 1.5-stage axial flow turbine are conducted to determine the specific influence of interplatform steps in the first stator—as caused by deviations in manufacturing or assembly. A basic first stator design and a design consisting of a bow and endwall contours are compared. Apart from step height, the position and geometry of the interplatform border are varied for the basic design. To create the steps, every third stator vane was elevated, together with its platforms at hub and shroud, such that the flow capacity is only little affected. The results show that the effects of steps on the platform borders in front and aft of the first stator can be decoupled from those occurring on the interplatform steps. For the latter, being the main contributor to the additional loss, the intensity of recirculation zones and losses increase substantially when the platform border is located close to the suction side. Using a relative step height of 1.82% span, the entropy production doubles when compared to a position close to the pressure side, which can be explained by differences in local flow velocity level. Regarding a circular-arc-shaped platform, the losses can be more than halved—mainly due to lower included angles between step and endwall flow streamlines. The findings can be explained by a nondimensional relation of the local entropy production using local values for step height and characteristic flow quantities. Furthermore, a reduction in step height leads to an attenuation of the otherwise linear relationship between step height and entropy production, which is mainly due to lower local ratio of step height and boundary layer thickness. In the case of laminar or transitional flow regions on the endwall, typical for turbine rigs with low inlet turbulence and low-pressure turbines under cruise conditions, the steps lead to immediate local flow transition and thus substantially different results.
    • Download: (4.978Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Loss Mechanisms of Interplatform Steps in a 1.5-Stage Axial Flow Turbine

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236034
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorKluxen, Robert
    contributor authorBehre, Stephan
    contributor authorJeschke, Peter
    contributor authorGuendogdu, Yavuz
    date accessioned2017-11-25T07:19:49Z
    date available2017-11-25T07:19:49Z
    date copyright2016/16/11
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_03_031007.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236034
    description abstractIn this paper, the detailed steady and unsteady numerical investigations of a 1.5-stage axial flow turbine are conducted to determine the specific influence of interplatform steps in the first stator—as caused by deviations in manufacturing or assembly. A basic first stator design and a design consisting of a bow and endwall contours are compared. Apart from step height, the position and geometry of the interplatform border are varied for the basic design. To create the steps, every third stator vane was elevated, together with its platforms at hub and shroud, such that the flow capacity is only little affected. The results show that the effects of steps on the platform borders in front and aft of the first stator can be decoupled from those occurring on the interplatform steps. For the latter, being the main contributor to the additional loss, the intensity of recirculation zones and losses increase substantially when the platform border is located close to the suction side. Using a relative step height of 1.82% span, the entropy production doubles when compared to a position close to the pressure side, which can be explained by differences in local flow velocity level. Regarding a circular-arc-shaped platform, the losses can be more than halved—mainly due to lower included angles between step and endwall flow streamlines. The findings can be explained by a nondimensional relation of the local entropy production using local values for step height and characteristic flow quantities. Furthermore, a reduction in step height leads to an attenuation of the otherwise linear relationship between step height and entropy production, which is mainly due to lower local ratio of step height and boundary layer thickness. In the case of laminar or transitional flow regions on the endwall, typical for turbine rigs with low inlet turbulence and low-pressure turbines under cruise conditions, the steps lead to immediate local flow transition and thus substantially different results.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLoss Mechanisms of Interplatform Steps in a 1.5-Stage Axial Flow Turbine
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4034848
    journal fristpage31007
    journal lastpage031007-14
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian