YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Turbomachinery
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Low-NOX Combustor Swirl Clocking on Intermediate Turbine Duct Vane Aerodynamics With an Upstream High Pressure Turbine Stage—An Experimental and Computational Study

    Source: Journal of Turbomachinery:;2017:;volume( 139 ):;issue: 001::page 11006
    Author:
    Johansson, Martin
    ,
    Povey, Thomas
    ,
    Chana, Kam
    ,
    Abrahamsson, Hans
    DOI: 10.1115/1.4034311
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Flow in an intermediate turbine duct (ITD) is highly complex, influenced by the upstream turbine stage flow structures, which include tip leakage flow and nonuniformities originating from the upstream high pressure turbine (HPT) vane and rotor. The complexity of the flow structures makes predicting them using numerical methods difficult, hence there exists a need for experimental validation. To evaluate the flow through an intermediate turbine duct including a turning vane, experiments were conducted in the Oxford Turbine Research Facility (OTRF). This is a short duration high speed test facility with a 3/4 engine-sized turbine, operating at the correct nondimensional parameters for aerodynamic and heat transfer measurements. The current configuration consists of a high pressure turbine stage and a downstream duct including a turning vane, for use in a counter-rotating turbine configuration. The facility has the ability to simulate low-NOx combustor swirl at the inlet to the turbine stage. This paper presents experimental aerodynamic results taken with three different turbine stage inlet conditions: a uniform inlet flow and two low-NOx swirl profiles (different clocking positions relative to the high pressure turbine vane). To further explain the flow through the 1.5 stage turbine, results from unsteady computational fluid dynamics (CFD) are included. The effect of varying the high pressure turbine vane inlet condition on the total pressure field through the 1.5 stage turbine, the intermediate turbine duct vane loading, and intermediate turbine duct exit condition are discussed and CFD results are compared with experimental data. The different inlet conditions are found to alter the flow exiting the high pressure turbine rotor. This is seen to have local effects on the intermediate turbine duct vane. With the current stator–stator vane count of 32-24, the effect of relative clocking between the two is found to have a larger effect on the aerodynamics in the intermediate turbine duct than the change in the high pressure turbine stage inlet condition. Given the severity of the low-NOx swirl profiles, this is perhaps surprising.
    • Download: (7.136Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Low-NOX Combustor Swirl Clocking on Intermediate Turbine Duct Vane Aerodynamics With an Upstream High Pressure Turbine Stage—An Experimental and Computational Study

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4236006
    Collections
    • Journal of Turbomachinery

    Show full item record

    contributor authorJohansson, Martin
    contributor authorPovey, Thomas
    contributor authorChana, Kam
    contributor authorAbrahamsson, Hans
    date accessioned2017-11-25T07:19:46Z
    date available2017-11-25T07:19:46Z
    date copyright2016/13/9
    date issued2017
    identifier issn0889-504X
    identifier otherturbo_139_01_011006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4236006
    description abstractFlow in an intermediate turbine duct (ITD) is highly complex, influenced by the upstream turbine stage flow structures, which include tip leakage flow and nonuniformities originating from the upstream high pressure turbine (HPT) vane and rotor. The complexity of the flow structures makes predicting them using numerical methods difficult, hence there exists a need for experimental validation. To evaluate the flow through an intermediate turbine duct including a turning vane, experiments were conducted in the Oxford Turbine Research Facility (OTRF). This is a short duration high speed test facility with a 3/4 engine-sized turbine, operating at the correct nondimensional parameters for aerodynamic and heat transfer measurements. The current configuration consists of a high pressure turbine stage and a downstream duct including a turning vane, for use in a counter-rotating turbine configuration. The facility has the ability to simulate low-NOx combustor swirl at the inlet to the turbine stage. This paper presents experimental aerodynamic results taken with three different turbine stage inlet conditions: a uniform inlet flow and two low-NOx swirl profiles (different clocking positions relative to the high pressure turbine vane). To further explain the flow through the 1.5 stage turbine, results from unsteady computational fluid dynamics (CFD) are included. The effect of varying the high pressure turbine vane inlet condition on the total pressure field through the 1.5 stage turbine, the intermediate turbine duct vane loading, and intermediate turbine duct exit condition are discussed and CFD results are compared with experimental data. The different inlet conditions are found to alter the flow exiting the high pressure turbine rotor. This is seen to have local effects on the intermediate turbine duct vane. With the current stator–stator vane count of 32-24, the effect of relative clocking between the two is found to have a larger effect on the aerodynamics in the intermediate turbine duct than the change in the high pressure turbine stage inlet condition. Given the severity of the low-NOx swirl profiles, this is perhaps surprising.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEffect of Low-NOX Combustor Swirl Clocking on Intermediate Turbine Duct Vane Aerodynamics With an Upstream High Pressure Turbine Stage—An Experimental and Computational Study
    typeJournal Paper
    journal volume139
    journal issue1
    journal titleJournal of Turbomachinery
    identifier doi10.1115/1.4034311
    journal fristpage11006
    journal lastpage011006-11
    treeJournal of Turbomachinery:;2017:;volume( 139 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian