YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Model for a Sphere–Flat Elastic–Plastic Adhesion Contact

    Source: Journal of Tribology:;2017:;volume( 139 ):;issue: 004::page 41401
    Author:
    Wang, Zhi Qian
    ,
    Wang, Jin Feng
    DOI: 10.1115/1.4034767
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a cubic model for the sphere–flat elastic–plastic contact without adhesion. In the cubic model, the applied load and the contact area are described by the cubic polynomial functions of the displacement to the power of 1/2 during loading and unloading, and the applied load is also expressed as the cubic polynomial function of the contact area to the power of 1/3 during loading. Utilizing these cubic polynomial functions, the elastic–plastic load (EPL) index, which is defined by the ratio between the dissipated energy due to plastic deformations and the work done to deform the sphere during loading, is calculated analytically. The calculated EPL index is just the ratio between the residue displacement after unloading and the maximum elastic–plastic displacement after loading. Using the cubic model, this paper extends the Johnson–Kendall–Roberts (JKR) model from the elastic regime to the elastic–plastic regime. Introducing the Derjaguin–Muller–Toporov (DMT) adhesion, the unified elastic–plastic adhesion model is obtained and compared with the simplified analytical model (SAM) and Kogut–Etsion (KE) model.
    • Download: (1.204Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Model for a Sphere–Flat Elastic–Plastic Adhesion Contact

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235922
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorWang, Zhi Qian
    contributor authorWang, Jin Feng
    date accessioned2017-11-25T07:19:38Z
    date available2017-11-25T07:19:38Z
    date copyright2017/20/3
    date issued2017
    identifier issn0742-4787
    identifier othertrib_139_04_041401.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235922
    description abstractThis paper presents a cubic model for the sphere–flat elastic–plastic contact without adhesion. In the cubic model, the applied load and the contact area are described by the cubic polynomial functions of the displacement to the power of 1/2 during loading and unloading, and the applied load is also expressed as the cubic polynomial function of the contact area to the power of 1/3 during loading. Utilizing these cubic polynomial functions, the elastic–plastic load (EPL) index, which is defined by the ratio between the dissipated energy due to plastic deformations and the work done to deform the sphere during loading, is calculated analytically. The calculated EPL index is just the ratio between the residue displacement after unloading and the maximum elastic–plastic displacement after loading. Using the cubic model, this paper extends the Johnson–Kendall–Roberts (JKR) model from the elastic regime to the elastic–plastic regime. Introducing the Derjaguin–Muller–Toporov (DMT) adhesion, the unified elastic–plastic adhesion model is obtained and compared with the simplified analytical model (SAM) and Kogut–Etsion (KE) model.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleModel for a Sphere–Flat Elastic–Plastic Adhesion Contact
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Tribology
    identifier doi10.1115/1.4034767
    journal fristpage41401
    journal lastpage041401-10
    treeJournal of Tribology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian