YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Analysis of Surface Temperatures Within Heat Flux Bands During Constant Acceleration Including Deceleration to Halt

    Source: Journal of Tribology:;2017:;volume( 139 ):;issue: 003::page 31102
    Author:
    Blanchet, Thierry A.
    ,
    Lenihan, Shane P.
    DOI: 10.1115/1.4034532
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In the modeling of a uniformly distributed band heat flux region experiencing constant acceleration from rest over a half-space surface, it is found that the maximum surface temperature at the instantaneous speed and the corresponding Peclet number are already well approximated by the long-established steady-state constant-speed models very soon after the moment the flux region clears the overlap of its original footprint at the initiation of motion. During startup when the flux still overlaps its original footprint, maximum temperature at any instant given the level of flux is well approximated by a simple one-dimensional conduction problem with a correspondingly stationary heat flux initiating at time zero. The above acceleration behaviors are observed regardless of whether the uniform flux is constant or Coulombic (proportional to instantaneous speed as frictional heating), though during the initial startup the maximum temperature rise in the Coulombic case is only two-thirds that of the constant flux case. The case of constant deceleration was additionally modeled, where at the eventual instant of halt, the maximum temperature in the case of constant flux was found to be directly proportional to the rate of deceleration to the 1/4 power, whereas in the case of Coulombic flux it was found that maximum temperature was instead inversely proportional to the rate of deceleration.
    • Download: (2.485Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Analysis of Surface Temperatures Within Heat Flux Bands During Constant Acceleration Including Deceleration to Halt

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235887
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorBlanchet, Thierry A.
    contributor authorLenihan, Shane P.
    date accessioned2017-11-25T07:19:35Z
    date available2017-11-25T07:19:35Z
    date copyright2017/10/1
    date issued2017
    identifier issn0742-4787
    identifier othertrib_139_03_031102.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235887
    description abstractIn the modeling of a uniformly distributed band heat flux region experiencing constant acceleration from rest over a half-space surface, it is found that the maximum surface temperature at the instantaneous speed and the corresponding Peclet number are already well approximated by the long-established steady-state constant-speed models very soon after the moment the flux region clears the overlap of its original footprint at the initiation of motion. During startup when the flux still overlaps its original footprint, maximum temperature at any instant given the level of flux is well approximated by a simple one-dimensional conduction problem with a correspondingly stationary heat flux initiating at time zero. The above acceleration behaviors are observed regardless of whether the uniform flux is constant or Coulombic (proportional to instantaneous speed as frictional heating), though during the initial startup the maximum temperature rise in the Coulombic case is only two-thirds that of the constant flux case. The case of constant deceleration was additionally modeled, where at the eventual instant of halt, the maximum temperature in the case of constant flux was found to be directly proportional to the rate of deceleration to the 1/4 power, whereas in the case of Coulombic flux it was found that maximum temperature was instead inversely proportional to the rate of deceleration.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAnalysis of Surface Temperatures Within Heat Flux Bands During Constant Acceleration Including Deceleration to Halt
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Tribology
    identifier doi10.1115/1.4034532
    journal fristpage31102
    journal lastpage031102-10
    treeJournal of Tribology:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian