YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Tribology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Experimental and Numerical Investigations of the Stribeck Curves for Lubricated Counterformal Contacts

    Source: Journal of Tribology:;2017:;volume( 139 ):;issue: 002::page 21505
    Author:
    He, Tao
    ,
    Zhu, Dong
    ,
    Wang, Jiaxu
    ,
    Jane Wang, Q.
    DOI: 10.1115/1.4034051
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The Stribeck curve is an important means to demonstrate the frictional behavior of a lubricated interface during the entire transition from boundary and mixed to full-film lubrication. In the present study, a new test apparatus has been built that can operate under rolling–sliding conditions at a continuously variable speed in an extremely wide range, approximately from 0.00006 to 60 m/s, covering six orders of magnitude. Hence, a complete Stribeck curve can be measured to reveal its basic characteristics for lubricated counterformal contacts. The measured curves are compared with numerical simulation results obtained from an available unified mixed elastohydrodynamic lubrication (EHL) model that is also capable of handling cases during the entire transition. A modified empirical model for the limiting shear stress of lubricant is obtained, and a good agreement between the measured and calculated Stribeck curves is achieved for the tested base oils in all the three lubrication regimes, which thus well validates the simulation methods employed. Both the experimental and numerical results indicate that the Stribeck curves for counterformal contact interfaces behave differently from those for conformal contacts. When the rolling speed increases at a fixed slide-to-roll ratio, the friction continuously decreases even in the full-film lubrication regime due to the reduction of the lubricant limiting shear stress caused mainly by the rise of the surface flash temperature. In addition, the test results indicate that the boundary additives in a commodity lubricant may have considerable influence on the boundary lubrication friction but that on the friction in the mixed and full-film lubrication appears to be limited.
    • Download: (4.272Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Experimental and Numerical Investigations of the Stribeck Curves for Lubricated Counterformal Contacts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235866
    Collections
    • Journal of Tribology

    Show full item record

    contributor authorHe, Tao
    contributor authorZhu, Dong
    contributor authorWang, Jiaxu
    contributor authorJane Wang, Q.
    date accessioned2017-11-25T07:19:33Z
    date available2017-11-25T07:19:33Z
    date copyright2016/24/8
    date issued2017
    identifier issn0742-4787
    identifier othertrib_139_02_021505.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235866
    description abstractThe Stribeck curve is an important means to demonstrate the frictional behavior of a lubricated interface during the entire transition from boundary and mixed to full-film lubrication. In the present study, a new test apparatus has been built that can operate under rolling–sliding conditions at a continuously variable speed in an extremely wide range, approximately from 0.00006 to 60 m/s, covering six orders of magnitude. Hence, a complete Stribeck curve can be measured to reveal its basic characteristics for lubricated counterformal contacts. The measured curves are compared with numerical simulation results obtained from an available unified mixed elastohydrodynamic lubrication (EHL) model that is also capable of handling cases during the entire transition. A modified empirical model for the limiting shear stress of lubricant is obtained, and a good agreement between the measured and calculated Stribeck curves is achieved for the tested base oils in all the three lubrication regimes, which thus well validates the simulation methods employed. Both the experimental and numerical results indicate that the Stribeck curves for counterformal contact interfaces behave differently from those for conformal contacts. When the rolling speed increases at a fixed slide-to-roll ratio, the friction continuously decreases even in the full-film lubrication regime due to the reduction of the lubricant limiting shear stress caused mainly by the rise of the surface flash temperature. In addition, the test results indicate that the boundary additives in a commodity lubricant may have considerable influence on the boundary lubrication friction but that on the friction in the mixed and full-film lubrication appears to be limited.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExperimental and Numerical Investigations of the Stribeck Curves for Lubricated Counterformal Contacts
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Tribology
    identifier doi10.1115/1.4034051
    journal fristpage21505
    journal lastpage021505-13
    treeJournal of Tribology:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian