YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Indirect Indentation Method for Evaluating the Linear Viscoelastic Properties of the Brain Tissue

    Source: Journal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 006::page 61007
    Author:
    Samadi-Dooki, Aref
    ,
    Voyiadjis, George Z.
    ,
    Stout, Rhett W.
    DOI: 10.1115/1.4036486
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Indentation experiments offer a robust, fast, and repeatable testing method for evaluating the mechanical properties of the solid-state materials in a wide stiffness range. With the advantage of requiring a minimal sample preparation and multiple tests on a small piece of specimen, this method has recently become a popular technique for measuring the elastic properties of the biological materials, especially the brain tissue whose ultrasoft nature makes its mechanical characterization very challenging. Nevertheless, some limitations are associated with the indentation of the brain tissue, such as improper surface detection, negative initial contact force due to tip-tissue moisture interaction, and partial contact between the tip and the sample. In this study, an indirect indentation scheme is proposed to overcome the aforementioned difficulties. In this way, the indentation force is transferred from a sharp tip to the surface of the tissue slices via a rigid coverslip. To demonstrate the accuracy of this method, the linear viscoelastic properties of the white and gray matters of the bovine brain samples are measured by imposing small cyclic loads at different frequencies. The rate, regional, directional, and postmortem time dependence of the viscoelastic moduli are investigated and compared with the previous results from cyclic shear and monotonic experiments on the brain tissue. While findings of this research present a comprehensive set of information for the viscoelastic properties of the brain at a wide frequency range, the central goal of this paper is to introduce a novel experimentation technique with noticeable advantages for biomechanical characterization of the soft tissue.
    • Download: (2.345Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Indirect Indentation Method for Evaluating the Linear Viscoelastic Properties of the Brain Tissue

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235796
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorSamadi-Dooki, Aref
    contributor authorVoyiadjis, George Z.
    contributor authorStout, Rhett W.
    date accessioned2017-11-25T07:19:24Z
    date available2017-11-25T07:19:24Z
    date copyright2017/26/4
    date issued2017
    identifier issn0148-0731
    identifier otherbio_139_06_061007.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235796
    description abstractIndentation experiments offer a robust, fast, and repeatable testing method for evaluating the mechanical properties of the solid-state materials in a wide stiffness range. With the advantage of requiring a minimal sample preparation and multiple tests on a small piece of specimen, this method has recently become a popular technique for measuring the elastic properties of the biological materials, especially the brain tissue whose ultrasoft nature makes its mechanical characterization very challenging. Nevertheless, some limitations are associated with the indentation of the brain tissue, such as improper surface detection, negative initial contact force due to tip-tissue moisture interaction, and partial contact between the tip and the sample. In this study, an indirect indentation scheme is proposed to overcome the aforementioned difficulties. In this way, the indentation force is transferred from a sharp tip to the surface of the tissue slices via a rigid coverslip. To demonstrate the accuracy of this method, the linear viscoelastic properties of the white and gray matters of the bovine brain samples are measured by imposing small cyclic loads at different frequencies. The rate, regional, directional, and postmortem time dependence of the viscoelastic moduli are investigated and compared with the previous results from cyclic shear and monotonic experiments on the brain tissue. While findings of this research present a comprehensive set of information for the viscoelastic properties of the brain at a wide frequency range, the central goal of this paper is to introduce a novel experimentation technique with noticeable advantages for biomechanical characterization of the soft tissue.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Indirect Indentation Method for Evaluating the Linear Viscoelastic Properties of the Brain Tissue
    typeJournal Paper
    journal volume139
    journal issue6
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4036486
    journal fristpage61007
    journal lastpage061007-12
    treeJournal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian