YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Refined General Theory of Stress Analysis for Tubesheet

    Source: Journal of Pressure Vessel Technology:;2017:;volume( 139 ):;issue: 004::page 41203
    Author:
    Zhu, Hongsong
    DOI: 10.1115/1.4036139
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The stress analysis method for fixed tubesheet (TS) heat exchangers (HEX) in pressure vessel codes such as ASME VIII-1, EN13445, and GB151 is based on the classical theory of thin plate on elastic foundation. In addition, these codes all assume a geometric and loading plane of symmetry at the midway between the two TSs so that only half of the unit or one TS is needed to be considered. In this study, a refined general theory of stress analysis for TS is presented which also considers unequal thickness for two TSs, different edge conditions, pressure drop and deadweight on two TSs, the anisotropic behavior of the TS in thickness direction, and transverse shear deformation in TS. Analysis shows floating and U-tube heat exchangers are the two special cases of the refined theory. Theoretical comparison shows that ASME method can be obtained from the special case of the simplified mechanical model of the refined theory. Numerical comparison results indicate that predictions given by the refined theory agree well with finite element analysis (FEA) for both thin and thick TS heat exchangers, while ASME results are not accurate or not correct. Therefore, it is concluded that the presented refined general theory provides a single unified method, dealing with both thin and thick TSs for different type (U type, floating, and fixed) HEXs in equal detail, with confidence to predict design stresses.
    • Download: (604.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Refined General Theory of Stress Analysis for Tubesheet

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235606
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorZhu, Hongsong
    date accessioned2017-11-25T07:19:08Z
    date available2017-11-25T07:19:08Z
    date copyright2017/21/4
    date issued2017
    identifier issn0094-9930
    identifier otherpvt_139_04_041203.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235606
    description abstractThe stress analysis method for fixed tubesheet (TS) heat exchangers (HEX) in pressure vessel codes such as ASME VIII-1, EN13445, and GB151 is based on the classical theory of thin plate on elastic foundation. In addition, these codes all assume a geometric and loading plane of symmetry at the midway between the two TSs so that only half of the unit or one TS is needed to be considered. In this study, a refined general theory of stress analysis for TS is presented which also considers unequal thickness for two TSs, different edge conditions, pressure drop and deadweight on two TSs, the anisotropic behavior of the TS in thickness direction, and transverse shear deformation in TS. Analysis shows floating and U-tube heat exchangers are the two special cases of the refined theory. Theoretical comparison shows that ASME method can be obtained from the special case of the simplified mechanical model of the refined theory. Numerical comparison results indicate that predictions given by the refined theory agree well with finite element analysis (FEA) for both thin and thick TS heat exchangers, while ASME results are not accurate or not correct. Therefore, it is concluded that the presented refined general theory provides a single unified method, dealing with both thin and thick TSs for different type (U type, floating, and fixed) HEXs in equal detail, with confidence to predict design stresses.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleRefined General Theory of Stress Analysis for Tubesheet
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4036139
    journal fristpage41203
    journal lastpage041203-10
    treeJournal of Pressure Vessel Technology:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian