YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Pressure Vessel Technology
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Performance-Based Reliability of ASME Piping Design Equations

    Source: Journal of Pressure Vessel Technology:;2017:;volume( 139 ):;issue: 003::page 31202
    Author:
    Gupta, Abhinav
    ,
    Saigal, Rakesh K.
    ,
    Ryu, Yonghee
    DOI: 10.1115/1.4034584
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, we present an exploratory study on the evaluation of reliability levels associated with the piping design equations specified by ASME Boiler and Pressure Vessel (BPV) Code, Section III. Probabilistic analyses are conducted to evaluate reliability levels in straight pipe segments with respect to performance functions that characterize the different failure criteria using advanced first-order reliability method (AFORM). One important failure criterion considered in this study relates to the plastic instability which forms the basis of piping design equations for emergency and faulted load level conditions as defined in the ASME code. The code-specified definition of plastic instability is based on the evaluation of a collapse moment which is defined using the moment–curvature curve for a particular component. In this study, we use elastic-perfectly plastic, bilinear kinematic hardening, and multilinear kinematic hardening stress–strain curves to develop closed-form expressions for the moment–curvature relationship in a straight unpressurized pipe. Both the pressurized and the unpressurized loading conditions are considered. The closed-form reliability is evaluated using Monte Carlo simulation because of the complex nature of the closed-form expression. The reliability values are calculated with respect to the maximum allowable moment specified by the code design equations that use deterministic safety factors.
    • Download: (1.073Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Performance-Based Reliability of ASME Piping Design Equations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235572
    Collections
    • Journal of Pressure Vessel Technology

    Show full item record

    contributor authorGupta, Abhinav
    contributor authorSaigal, Rakesh K.
    contributor authorRyu, Yonghee
    date accessioned2017-11-25T07:19:04Z
    date available2017-11-25T07:19:04Z
    date copyright2016/11/10
    date issued2017
    identifier issn0094-9930
    identifier otherpvt_139_03_031202.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235572
    description abstractIn this paper, we present an exploratory study on the evaluation of reliability levels associated with the piping design equations specified by ASME Boiler and Pressure Vessel (BPV) Code, Section III. Probabilistic analyses are conducted to evaluate reliability levels in straight pipe segments with respect to performance functions that characterize the different failure criteria using advanced first-order reliability method (AFORM). One important failure criterion considered in this study relates to the plastic instability which forms the basis of piping design equations for emergency and faulted load level conditions as defined in the ASME code. The code-specified definition of plastic instability is based on the evaluation of a collapse moment which is defined using the moment–curvature curve for a particular component. In this study, we use elastic-perfectly plastic, bilinear kinematic hardening, and multilinear kinematic hardening stress–strain curves to develop closed-form expressions for the moment–curvature relationship in a straight unpressurized pipe. Both the pressurized and the unpressurized loading conditions are considered. The closed-form reliability is evaluated using Monte Carlo simulation because of the complex nature of the closed-form expression. The reliability values are calculated with respect to the maximum allowable moment specified by the code design equations that use deterministic safety factors.
    publisherThe American Society of Mechanical Engineers (ASME)
    titlePerformance-Based Reliability of ASME Piping Design Equations
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Pressure Vessel Technology
    identifier doi10.1115/1.4034584
    journal fristpage31202
    journal lastpage031202-10
    treeJournal of Pressure Vessel Technology:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian