YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A New Holistic Approach for Subsea Pipeline Upheaval Buckling Design

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 005::page 51702
    Author:
    Liu, M.
    ,
    Cross, C.
    DOI: 10.1115/1.4036377
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: For a trenched and buried pipeline, the propensity to upheaval buckling (UHB) is a major design concern. Predictive UHB design is typically required at the outset to determine both trenching and backfilling requirements. Additional rockdump schedule can be established by analyzing post pipelay out of straightness (OOS) survey data incorporating appropriate safety factors based on a structural reliability analysis (SRA). The normal approach is to examine the as-laid pipeline imperfection survey statistics and data accuracy. The structural reliability analysis and load factor calculation are typically performed a priori based on the assumed initial imperfections using the universal design curve methodology. A new pseudo-energy method for UHB and OOS is proposed and discussed in this paper based on the variational principle and modal analysis. The approach takes into account the effects of varying effective axial force, trench imperfections, and vertical uplift resistance, by combining both axial friction and lateral resistance methods into a unified model. A new concept, effective uplift resistance and associated load, is also introduced to deal with nonuniform backfill cover. Adjacent imperfections and backfill profiles are considered in detail. A finite element (FE) model is developed to consist of three-noded quadratic pipe elements using abaqus Ver 6.12, and iterations of FE analyses are performed to demonstrate the tangible benefits of the approach specifically for UHB OOS design in relation to target trenching and backfilling, leading to improved reliability and potential cost saving in UHB OOS design and rockdump installation.
    • Download: (1.010Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A New Holistic Approach for Subsea Pipeline Upheaval Buckling Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235490
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorLiu, M.
    contributor authorCross, C.
    date accessioned2017-11-25T07:18:55Z
    date available2017-11-25T07:18:55Z
    date copyright2017/25/5
    date issued2017
    identifier issn0892-7219
    identifier otheromae_139_05_051702.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235490
    description abstractFor a trenched and buried pipeline, the propensity to upheaval buckling (UHB) is a major design concern. Predictive UHB design is typically required at the outset to determine both trenching and backfilling requirements. Additional rockdump schedule can be established by analyzing post pipelay out of straightness (OOS) survey data incorporating appropriate safety factors based on a structural reliability analysis (SRA). The normal approach is to examine the as-laid pipeline imperfection survey statistics and data accuracy. The structural reliability analysis and load factor calculation are typically performed a priori based on the assumed initial imperfections using the universal design curve methodology. A new pseudo-energy method for UHB and OOS is proposed and discussed in this paper based on the variational principle and modal analysis. The approach takes into account the effects of varying effective axial force, trench imperfections, and vertical uplift resistance, by combining both axial friction and lateral resistance methods into a unified model. A new concept, effective uplift resistance and associated load, is also introduced to deal with nonuniform backfill cover. Adjacent imperfections and backfill profiles are considered in detail. A finite element (FE) model is developed to consist of three-noded quadratic pipe elements using abaqus Ver 6.12, and iterations of FE analyses are performed to demonstrate the tangible benefits of the approach specifically for UHB OOS design in relation to target trenching and backfilling, leading to improved reliability and potential cost saving in UHB OOS design and rockdump installation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA New Holistic Approach for Subsea Pipeline Upheaval Buckling Design
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4036377
    journal fristpage51702
    journal lastpage051702-9
    treeJournal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian