YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Full-Scale Fairing Qualification Tests

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 004::page 41802
    Author:
    Constantinides, Yiannis
    ,
    Liapis, Stergios
    ,
    Spencer, Don
    ,
    Islam, Mohammed
    ,
    Skaugset, Kjetil
    ,
    Batra, Apurva
    ,
    Baarholm, Rolf
    DOI: 10.1115/1.4036373
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Production risers as well as drilling risers are often exposed to ocean currents. Vortex-induced vibrations (VIVs) have been observed in the field and can cause fatigue failure and excessive drag on the riser. In order to suppress VIV, fairings are often used. This paper presents qualification tests for two types of fairings: the short-crab claw (SCC) fairings and the AIMS dual flow splitter (ADFS) fairings. The short-crab claw fairing design is a novel design patented by the Norwegian deepwater project (NDP). As will be detailed in this paper, both the SCC and ADFS designs offer very low drag, completely suppress VIV, and are effective even when they are in tandem. A model test campaign was undertaken in the 200-m towing tank facility at the ocean, coastal, and river engineering in St. John's, NF, Canada. A rigid pipe with a diameter of 0.3556 m (14 in) was utilized for the experiments. This corresponds to prototype size for a production riser and a 1:3.8 scaled model for a 1.3716 m (54 in) drilling riser. Given that these tests were conducted at prototype scale, they were used to qualify the fairings for field deployment. Both fairings (SCC and ADFS) were very effective in suppressing VIV and reducing drag. The ADFS fairings are most effective for a span to diameter ratio of 1.75. For all fairing geometries, it was found that a small taper increases the fairing effectiveness considerably.
    • Download: (2.620Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Full-Scale Fairing Qualification Tests

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235480
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorConstantinides, Yiannis
    contributor authorLiapis, Stergios
    contributor authorSpencer, Don
    contributor authorIslam, Mohammed
    contributor authorSkaugset, Kjetil
    contributor authorBatra, Apurva
    contributor authorBaarholm, Rolf
    date accessioned2017-11-25T07:18:54Z
    date available2017-11-25T07:18:54Z
    date copyright2017/16/5
    date issued2017
    identifier issn0892-7219
    identifier otheromae_139_04_041802.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235480
    description abstractProduction risers as well as drilling risers are often exposed to ocean currents. Vortex-induced vibrations (VIVs) have been observed in the field and can cause fatigue failure and excessive drag on the riser. In order to suppress VIV, fairings are often used. This paper presents qualification tests for two types of fairings: the short-crab claw (SCC) fairings and the AIMS dual flow splitter (ADFS) fairings. The short-crab claw fairing design is a novel design patented by the Norwegian deepwater project (NDP). As will be detailed in this paper, both the SCC and ADFS designs offer very low drag, completely suppress VIV, and are effective even when they are in tandem. A model test campaign was undertaken in the 200-m towing tank facility at the ocean, coastal, and river engineering in St. John's, NF, Canada. A rigid pipe with a diameter of 0.3556 m (14 in) was utilized for the experiments. This corresponds to prototype size for a production riser and a 1:3.8 scaled model for a 1.3716 m (54 in) drilling riser. Given that these tests were conducted at prototype scale, they were used to qualify the fairings for field deployment. Both fairings (SCC and ADFS) were very effective in suppressing VIV and reducing drag. The ADFS fairings are most effective for a span to diameter ratio of 1.75. For all fairing geometries, it was found that a small taper increases the fairing effectiveness considerably.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFull-Scale Fairing Qualification Tests
    typeJournal Paper
    journal volume139
    journal issue4
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4036373
    journal fristpage41802
    journal lastpage041802-9
    treeJournal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian