YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Offshore Mechanics and Arctic Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Empirical Procedure for Fatigue Damage Estimation in Instrumented Risers

    Source: Journal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 003::page 31701
    Author:
    Shi, C.
    ,
    Manuel, L.
    DOI: 10.1115/1.4035303
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In order to assess the effects of vortex-induced vibration (VIV) and to ensure riser integrity, field monitoring campaigns are often conducted wherein the riser response is recorded by a few data sensors distributed along the length of the riser. In this study, two empirical techniques–proper orthogonal decomposition (POD) and weighted waveform analysis (WWA)–are sequentially applied to the data; together, they offer a novel empirical procedure for fatigue damage estimation in an instrumented riser. The procedures are briefly described as follows: first, POD is used to extract the most energetic spatial modes of the riser response from the measurements, which are defined only at the available sensor locations. Accordingly, a second step uses WWA to express each dominant POD mode as a series of riser natural modes that are continuous spatial functions defined over the entire riser length. Based on the above empirically identified modal information, the riser response over the entire length is reconstructed in reverse–i.e., compose identified natural modes into the POD modes and, then, assemble all these dominant POD modal response components into the derived riser response. The POD procedure empirically extracts the energetic dynamic response characteristics without any assumptions and effectively cleans the data of noisy or less important features; this fundamental application of WWA is used to identify dominant riser natural modes–all this is possible using the limited number of available measurements from sensor locations. Application of the procedure is demonstrated using experimental data from the Norwegian Deepwater Programme (NDP) model riser.
    • Download: (1.562Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Empirical Procedure for Fatigue Damage Estimation in Instrumented Risers

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235460
    Collections
    • Journal of Offshore Mechanics and Arctic Engineering

    Show full item record

    contributor authorShi, C.
    contributor authorManuel, L.
    date accessioned2017-11-25T07:18:52Z
    date available2017-11-25T07:18:52Z
    date copyright2017/17/2
    date issued2017
    identifier issn0892-7219
    identifier otheromae_139_03_031701.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235460
    description abstractIn order to assess the effects of vortex-induced vibration (VIV) and to ensure riser integrity, field monitoring campaigns are often conducted wherein the riser response is recorded by a few data sensors distributed along the length of the riser. In this study, two empirical techniques–proper orthogonal decomposition (POD) and weighted waveform analysis (WWA)–are sequentially applied to the data; together, they offer a novel empirical procedure for fatigue damage estimation in an instrumented riser. The procedures are briefly described as follows: first, POD is used to extract the most energetic spatial modes of the riser response from the measurements, which are defined only at the available sensor locations. Accordingly, a second step uses WWA to express each dominant POD mode as a series of riser natural modes that are continuous spatial functions defined over the entire riser length. Based on the above empirically identified modal information, the riser response over the entire length is reconstructed in reverse–i.e., compose identified natural modes into the POD modes and, then, assemble all these dominant POD modal response components into the derived riser response. The POD procedure empirically extracts the energetic dynamic response characteristics without any assumptions and effectively cleans the data of noisy or less important features; this fundamental application of WWA is used to identify dominant riser natural modes–all this is possible using the limited number of available measurements from sensor locations. Application of the procedure is demonstrated using experimental data from the Norwegian Deepwater Programme (NDP) model riser.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleAn Empirical Procedure for Fatigue Damage Estimation in Instrumented Risers
    typeJournal Paper
    journal volume139
    journal issue3
    journal titleJournal of Offshore Mechanics and Arctic Engineering
    identifier doi10.1115/1.4035303
    journal fristpage31701
    journal lastpage031701-8
    treeJournal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian