Show simple item record

contributor authorYao, Xiaoliang
contributor authorFang, Lili
contributor authorQi, Jilin
contributor authorYu, Fan
date accessioned2017-11-25T07:18:50Z
date available2017-11-25T07:18:50Z
date copyright2017/16/2
date issued2017
identifier issn0892-7219
identifier otheromae_139_02_021501.pdf
identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235447
description abstractIn this study, freeze-thaw cycles were conducted on samples of a fine grained soil from the Qinghai–Tibetan plateau which had been prepared with different dry unit weights. During freeze-thaw cycles, electrical resistivity was measured. The soil samples were also scanned by X-ray computed tomography (CT) before and after freeze-thaw cycles. Unconsolidated and drained (UD) triaxial compression test was performed to obtain the apparent friction angle and cohesion. Changes in the arrangement and connections between soil particles were analyzed so as to investigate the mechanisms of changes in the strength parameters. The electrical resistivity increased in all samples, regardless of the different original dry unit weights, which implies that in all cases the arrangement of soil particles became more irregular and attached area between soil particles was increased. These changes contributed to the increase of apparent friction angle. On the other hand, the CT scans indicated that, depending upon the original dry unit weight, freeze-thaw cycles induced strengthening or deterioration in particle connections, and thus apparent cohesion was increased or decreased. With three freeze-thaw cycles, changes in microstructure of soil samples led to increases or decrease in both the apparent friction angle and cohesion.
publisherThe American Society of Mechanical Engineers (ASME)
titleStudy on Mechanism of Freeze-Thaw Cycles Induced Changes in Soil Strength Using Electrical Resistivity and X-Ray Computed Tomography
typeJournal Paper
journal volume139
journal issue2
journal titleJournal of Offshore Mechanics and Arctic Engineering
identifier doi10.1115/1.4035244
journal fristpage21501
journal lastpage021501-9
treeJournal of Offshore Mechanics and Arctic Engineering:;2017:;volume( 139 ):;issue: 002
contenttypeFulltext


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record