YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Biomechanical Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Use of Robotic Manipulators to Study Diarthrodial Joint Function

    Source: Journal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 002::page 21010
    Author:
    Debski, Richard E.
    ,
    Yamakawa, Satoshi
    ,
    Musahl, Volker
    ,
    Fujie, Hiromichi
    DOI: 10.1115/1.4035644
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Diarthrodial joint function is mediated by a complex interaction between bones, ligaments, capsules, articular cartilage, and muscles. To gain a better understanding of injury mechanisms and to improve surgical procedures, an improved understanding of the structure and function of diarthrodial joints needs to be obtained. Thus, robotic testing systems have been developed to measure the resulting kinematics of diarthrodial joints as well as the in situ forces in ligaments and their replacement grafts in response to external loading conditions. These six degrees-of-freedom (DOF) testing systems can be controlled in either position or force modes to simulate physiological loading conditions or clinical exams. Recent advances allow kinematic, in situ force, and strain data to be measured continuously throughout the range of joint motion using velocity-impedance control, and in vivo kinematic data to be reproduced on cadaveric specimens to determine in situ forces during physiologic motions. The principle of superposition can also be used to determine the in situ forces carried by capsular tissue in the longitudinal direction after separation from the rest of the capsule as well as the interaction forces with the surrounding tissue. Finally, robotic testing systems can be used to simulate soft tissue injury mechanisms, and computational models can be validated using the kinematic and force data to help predict in vivo stresses and strains present in these tissues. The goal of these analyses is to help improve surgical repair procedures and postoperative rehabilitation protocols. In the future, more information is needed regarding the complex in vivo loads applied to diarthrodial joints during clinical exams and activities of daily living to serve as input to the robotic testing systems. Improving the capability to accurately reproduce in vivo kinematics with robotic testing systems should also be examined.
    • Download: (1.024Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Use of Robotic Manipulators to Study Diarthrodial Joint Function

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235341
    Collections
    • Journal of Biomechanical Engineering

    Show full item record

    contributor authorDebski, Richard E.
    contributor authorYamakawa, Satoshi
    contributor authorMusahl, Volker
    contributor authorFujie, Hiromichi
    date accessioned2017-11-25T07:18:42Z
    date available2017-11-25T07:18:42Z
    date copyright2017/19/1
    date issued2017
    identifier issn0148-0731
    identifier otherbio_139_02_021010.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235341
    description abstractDiarthrodial joint function is mediated by a complex interaction between bones, ligaments, capsules, articular cartilage, and muscles. To gain a better understanding of injury mechanisms and to improve surgical procedures, an improved understanding of the structure and function of diarthrodial joints needs to be obtained. Thus, robotic testing systems have been developed to measure the resulting kinematics of diarthrodial joints as well as the in situ forces in ligaments and their replacement grafts in response to external loading conditions. These six degrees-of-freedom (DOF) testing systems can be controlled in either position or force modes to simulate physiological loading conditions or clinical exams. Recent advances allow kinematic, in situ force, and strain data to be measured continuously throughout the range of joint motion using velocity-impedance control, and in vivo kinematic data to be reproduced on cadaveric specimens to determine in situ forces during physiologic motions. The principle of superposition can also be used to determine the in situ forces carried by capsular tissue in the longitudinal direction after separation from the rest of the capsule as well as the interaction forces with the surrounding tissue. Finally, robotic testing systems can be used to simulate soft tissue injury mechanisms, and computational models can be validated using the kinematic and force data to help predict in vivo stresses and strains present in these tissues. The goal of these analyses is to help improve surgical repair procedures and postoperative rehabilitation protocols. In the future, more information is needed regarding the complex in vivo loads applied to diarthrodial joints during clinical exams and activities of daily living to serve as input to the robotic testing systems. Improving the capability to accurately reproduce in vivo kinematics with robotic testing systems should also be examined.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleUse of Robotic Manipulators to Study Diarthrodial Joint Function
    typeJournal Paper
    journal volume139
    journal issue2
    journal titleJournal of Biomechanical Engineering
    identifier doi10.1115/1.4035644
    journal fristpage21010
    journal lastpage021010-7
    treeJournal of Biomechanical Engineering:;2017:;volume( 139 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian