| description abstract | In Korea, pressurized heavy water-cooled reactors (PHWR) account for 17% of operating units and have taken an important role in providing national energy supply. The recent biggest issue in domestic PHWR community was the continued operation of the Wolsong-1 CANada Deuterium Uranium (CANDU) plant, which has recently been approved to operate for 10 more years after a 30 year design life. In relation to this issue, various actions from both post-Fukushima lessons and Wolsong-1 (WS1) stress test results are being taken. In KAERI R&D, the following topics are studied to support the basis for these actions. First, PHWR severe accident issues such as (1) primary heat transport system (PHTS) overpressure protection capability, (2) containment overpressure protection capability, and (3) bypass source term are evaluated. Second, a computer tool (called MAAP–ISAAC) has been modified and updated to support analyzing Wolsong severe accident issues. Third, a decision supporting tool, called Severe Accident Management Expert (SAMEX)–CANDU, has been developed to aid emergency response experts under severe accident conditions. | |