YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Human Thermoregulation Simulator for Calibrating Water-Perfused Cooling Pad Systems for Therapeutic Hypothermia

    Source: Journal of Medical Devices:;2017:;volume( 011 ):;issue: 003::page 34506
    Author:
    Chacko, Priya S. E.
    ,
    Seifi, Ali
    ,
    Diller, Kenneth R.
    DOI: 10.1115/1.4037054
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The induction of a mild reduction in body core temperature has been demonstrated to provide neuroprotection for patients who have suffered a medical event resulting in ischemia to the brain or vital organs. Temperatures in the range of 32–34 °C provide the required level of protection and can be produced and maintained by diverse means for periods of days. Rewarming from hypothermia must be conducted slowly to avoid serious adverse consequences and usually is performed under control of the thermal therapeutic device based on a closed-loop feedback strategy based on the patient's core temperature. Given the sensitivity and criticality of this process, it is important that the device control system be able to interact with the human thermoregulation system, which itself is highly nonlinear. The therapeutic hypothermia device must be calibrated periodically to ensure that its performance is accurate and safe for the patient. In general, calibration processes are conducted with the hypothermia device operating on a passive thermal mass that behaves much differently than a living human. This project has developed and demonstrated an active human thermoregulation simulator (HTRS) that embodies major governing thermal functions such as central metabolism, tissue conduction, and convective transport between the core and the skin surface via the flow of blood and that replicates primary dimensions of the torso. When operated at physiological values for metabolism and cardiac output, the temperature gradients created across the body layers and the heat exchange with both an air environment and a clinical water-circulating cooling pad system match that which would occur in a living body. Approximately two-thirds of the heat flow between the core and surface is via convection rather than conduction, highlighting the importance of including the contribution of blood circulation to human thermoregulation in a device designed to calibrate the functioning of a therapeutic hypothermia system. The thermoregulation simulator functions as anticipated for a typical living patient during both body cooling and warming processes. This human thermoregulatory surrogate can be used to calibrate the thermal function of water-perfused cooling pads for a hypothermic temperature management system during both static and transient operation.
    • Download: (3.127Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Human Thermoregulation Simulator for Calibrating Water-Perfused Cooling Pad Systems for Therapeutic Hypothermia

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235245
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorChacko, Priya S. E.
    contributor authorSeifi, Ali
    contributor authorDiller, Kenneth R.
    date accessioned2017-11-25T07:18:34Z
    date available2017-11-25T07:18:34Z
    date copyright2017/28/6
    date issued2017
    identifier issn1932-6181
    identifier othermed_011_03_034506.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235245
    description abstractThe induction of a mild reduction in body core temperature has been demonstrated to provide neuroprotection for patients who have suffered a medical event resulting in ischemia to the brain or vital organs. Temperatures in the range of 32–34 °C provide the required level of protection and can be produced and maintained by diverse means for periods of days. Rewarming from hypothermia must be conducted slowly to avoid serious adverse consequences and usually is performed under control of the thermal therapeutic device based on a closed-loop feedback strategy based on the patient's core temperature. Given the sensitivity and criticality of this process, it is important that the device control system be able to interact with the human thermoregulation system, which itself is highly nonlinear. The therapeutic hypothermia device must be calibrated periodically to ensure that its performance is accurate and safe for the patient. In general, calibration processes are conducted with the hypothermia device operating on a passive thermal mass that behaves much differently than a living human. This project has developed and demonstrated an active human thermoregulation simulator (HTRS) that embodies major governing thermal functions such as central metabolism, tissue conduction, and convective transport between the core and the skin surface via the flow of blood and that replicates primary dimensions of the torso. When operated at physiological values for metabolism and cardiac output, the temperature gradients created across the body layers and the heat exchange with both an air environment and a clinical water-circulating cooling pad system match that which would occur in a living body. Approximately two-thirds of the heat flow between the core and surface is via convection rather than conduction, highlighting the importance of including the contribution of blood circulation to human thermoregulation in a device designed to calibrate the functioning of a therapeutic hypothermia system. The thermoregulation simulator functions as anticipated for a typical living patient during both body cooling and warming processes. This human thermoregulatory surrogate can be used to calibrate the thermal function of water-perfused cooling pads for a hypothermic temperature management system during both static and transient operation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleA Human Thermoregulation Simulator for Calibrating Water-Perfused Cooling Pad Systems for Therapeutic Hypothermia
    typeJournal Paper
    journal volume11
    journal issue3
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4037054
    journal fristpage34506
    journal lastpage034506-10
    treeJournal of Medical Devices:;2017:;volume( 011 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian