YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Computational Modeling and Comparative Tissue Damage Analysis of Angioplasty and Orbital Atherectomy Interventional Procedures

    Source: Journal of Medical Devices:;2017:;volume( 011 ):;issue: 002::page 21006
    Author:
    Deokar, Rohit R.
    ,
    Klamecki, Barney E.
    DOI: 10.1115/1.4036299
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This research was directed toward quantitatively characterizing the effects of arterial mechanical treatment procedures on the stress and strain energy states of the artery wall. Finite element simulations of percutaneous transluminal angioplasty (PTA) and orbital atherectomy (OA) were performed on arterial lesion models with various extents and types of plaque. Stress fields in the artery were calculated and strain energy density was used as an explicit description of potential damage to the artery. The research also included numerical simulations of changes in arterial compliance due to orbital atherectomy. The angioplasty simulations show that the damage energy fields in the media and adventitia are predominant in regions of the lesion that are not protected by a layer of calcification. In addition, it was observed that softening the plaque components leads to a lower peak stress and therefore lesser damage energy in the media and adventitia under the action of a semicompliant balloon. Orbital atherectomy simulations revealed that the major portion of strain energy dissipated is concentrated in the plaque components in contact with the spinning tool. The damage and peak stress fields in the media and adventitia components of the vessel were significantly less. This observation suggests less mechanically induced trauma during a localized procedure like orbital atherectomy. Artery compliance was calculated pre- and post-treatment and an increase was observed after the orbital atherectomy procedure. The localized plaque disruption produced in atherectomy suggests that the undesirable stress states in angioplasty can be mitigated by a combination of procedures such as atherectomy followed by angioplasty.
    • Download: (8.874Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Computational Modeling and Comparative Tissue Damage Analysis of Angioplasty and Orbital Atherectomy Interventional Procedures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235213
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorDeokar, Rohit R.
    contributor authorKlamecki, Barney E.
    date accessioned2017-11-25T07:18:31Z
    date available2017-11-25T07:18:31Z
    date copyright2017/3/5
    date issued2017
    identifier issn1932-6181
    identifier othermed_011_02_021006.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235213
    description abstractThis research was directed toward quantitatively characterizing the effects of arterial mechanical treatment procedures on the stress and strain energy states of the artery wall. Finite element simulations of percutaneous transluminal angioplasty (PTA) and orbital atherectomy (OA) were performed on arterial lesion models with various extents and types of plaque. Stress fields in the artery were calculated and strain energy density was used as an explicit description of potential damage to the artery. The research also included numerical simulations of changes in arterial compliance due to orbital atherectomy. The angioplasty simulations show that the damage energy fields in the media and adventitia are predominant in regions of the lesion that are not protected by a layer of calcification. In addition, it was observed that softening the plaque components leads to a lower peak stress and therefore lesser damage energy in the media and adventitia under the action of a semicompliant balloon. Orbital atherectomy simulations revealed that the major portion of strain energy dissipated is concentrated in the plaque components in contact with the spinning tool. The damage and peak stress fields in the media and adventitia components of the vessel were significantly less. This observation suggests less mechanically induced trauma during a localized procedure like orbital atherectomy. Artery compliance was calculated pre- and post-treatment and an increase was observed after the orbital atherectomy procedure. The localized plaque disruption produced in atherectomy suggests that the undesirable stress states in angioplasty can be mitigated by a combination of procedures such as atherectomy followed by angioplasty.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleComputational Modeling and Comparative Tissue Damage Analysis of Angioplasty and Orbital Atherectomy Interventional Procedures
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4036299
    journal fristpage21006
    journal lastpage021006-15
    treeJournal of Medical Devices:;2017:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian