Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical ToolSource: Journal of Medical Devices:;2017:;volume( 011 ):;issue: 001::page 14502DOI: 10.1115/1.4034879Publisher: The American Society of Mechanical Engineers (ASME)
Abstract: A novel monobloc design of a two degree-of-freedom (DOF) compliant tool tip for a handheld powered surgical tool is presented in this paper. The monobloc tool tip can pitch and yaw using corner-filleted flexure hinge-based compliant joints and has an integrated compliant grasper. The 2DOF of the tool tip is realized by six compliant joints placed in an alternating fashion, orthogonal to each other. The tool is externally powered and consists of a drive box, a stainless steel tube, and a compliant tool tip at the distal end. The drive box houses a thumb joystick for command input, three servo actuators, and a microcontroller. The microcontroller maps surgeon's command input to the tool tip orientation and grasper actuation. By design, the graspers of the tool tip are actuated by tensile forces conveyed by the tethers, which exert a compressive load on the 2DOF compliant joints. Since the compressive load-carrying capacity of slender flexure-based compliant joints is limited, a design to enhance the compressive load-carrying capacity of the compliant joints with a circular guide is presented. A finite-element simulation was done to verify the design of the compliant joints. Experiments were carried out to assess the relationship between the force input by the servo actuators and joint deflection. Additional experiments were carried out to determine the maximum pinching force that can be exerted by the compliant graspers. A prototype of the complete surgical tool was built to demonstrate the utility of the proposed compliant tool tip as an alternative to traditional tool tip for a handheld powered surgical tool.
|
Collections
Show full item record
| contributor author | Chandrasekaran, Karthik | |
| contributor author | Thondiyath, Asokan | |
| date accessioned | 2017-11-25T07:18:30Z | |
| date available | 2017-11-25T07:18:30Z | |
| date copyright | 2016/21/12 | |
| date issued | 2017 | |
| identifier issn | 1932-6181 | |
| identifier other | med_011_01_014502.pdf | |
| identifier uri | http://138.201.223.254:8080/yetl1/handle/yetl/4235202 | |
| description abstract | A novel monobloc design of a two degree-of-freedom (DOF) compliant tool tip for a handheld powered surgical tool is presented in this paper. The monobloc tool tip can pitch and yaw using corner-filleted flexure hinge-based compliant joints and has an integrated compliant grasper. The 2DOF of the tool tip is realized by six compliant joints placed in an alternating fashion, orthogonal to each other. The tool is externally powered and consists of a drive box, a stainless steel tube, and a compliant tool tip at the distal end. The drive box houses a thumb joystick for command input, three servo actuators, and a microcontroller. The microcontroller maps surgeon's command input to the tool tip orientation and grasper actuation. By design, the graspers of the tool tip are actuated by tensile forces conveyed by the tethers, which exert a compressive load on the 2DOF compliant joints. Since the compressive load-carrying capacity of slender flexure-based compliant joints is limited, a design to enhance the compressive load-carrying capacity of the compliant joints with a circular guide is presented. A finite-element simulation was done to verify the design of the compliant joints. Experiments were carried out to assess the relationship between the force input by the servo actuators and joint deflection. Additional experiments were carried out to determine the maximum pinching force that can be exerted by the compliant graspers. A prototype of the complete surgical tool was built to demonstrate the utility of the proposed compliant tool tip as an alternative to traditional tool tip for a handheld powered surgical tool. | |
| publisher | The American Society of Mechanical Engineers (ASME) | |
| title | Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool | |
| type | Journal Paper | |
| journal volume | 11 | |
| journal issue | 1 | |
| journal title | Journal of Medical Devices | |
| identifier doi | 10.1115/1.4034879 | |
| journal fristpage | 14502 | |
| journal lastpage | 014502-3 | |
| tree | Journal of Medical Devices:;2017:;volume( 011 ):;issue: 001 | |
| contenttype | Fulltext |