YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool

    Source: Journal of Medical Devices:;2017:;volume( 011 ):;issue: 001::page 14502
    Author:
    Chandrasekaran, Karthik
    ,
    Thondiyath, Asokan
    DOI: 10.1115/1.4034879
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: A novel monobloc design of a two degree-of-freedom (DOF) compliant tool tip for a handheld powered surgical tool is presented in this paper. The monobloc tool tip can pitch and yaw using corner-filleted flexure hinge-based compliant joints and has an integrated compliant grasper. The 2DOF of the tool tip is realized by six compliant joints placed in an alternating fashion, orthogonal to each other. The tool is externally powered and consists of a drive box, a stainless steel tube, and a compliant tool tip at the distal end. The drive box houses a thumb joystick for command input, three servo actuators, and a microcontroller. The microcontroller maps surgeon's command input to the tool tip orientation and grasper actuation. By design, the graspers of the tool tip are actuated by tensile forces conveyed by the tethers, which exert a compressive load on the 2DOF compliant joints. Since the compressive load-carrying capacity of slender flexure-based compliant joints is limited, a design to enhance the compressive load-carrying capacity of the compliant joints with a circular guide is presented. A finite-element simulation was done to verify the design of the compliant joints. Experiments were carried out to assess the relationship between the force input by the servo actuators and joint deflection. Additional experiments were carried out to determine the maximum pinching force that can be exerted by the compliant graspers. A prototype of the complete surgical tool was built to demonstrate the utility of the proposed compliant tool tip as an alternative to traditional tool tip for a handheld powered surgical tool.
    • Download: (2.192Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235202
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorChandrasekaran, Karthik
    contributor authorThondiyath, Asokan
    date accessioned2017-11-25T07:18:30Z
    date available2017-11-25T07:18:30Z
    date copyright2016/21/12
    date issued2017
    identifier issn1932-6181
    identifier othermed_011_01_014502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235202
    description abstractA novel monobloc design of a two degree-of-freedom (DOF) compliant tool tip for a handheld powered surgical tool is presented in this paper. The monobloc tool tip can pitch and yaw using corner-filleted flexure hinge-based compliant joints and has an integrated compliant grasper. The 2DOF of the tool tip is realized by six compliant joints placed in an alternating fashion, orthogonal to each other. The tool is externally powered and consists of a drive box, a stainless steel tube, and a compliant tool tip at the distal end. The drive box houses a thumb joystick for command input, three servo actuators, and a microcontroller. The microcontroller maps surgeon's command input to the tool tip orientation and grasper actuation. By design, the graspers of the tool tip are actuated by tensile forces conveyed by the tethers, which exert a compressive load on the 2DOF compliant joints. Since the compressive load-carrying capacity of slender flexure-based compliant joints is limited, a design to enhance the compressive load-carrying capacity of the compliant joints with a circular guide is presented. A finite-element simulation was done to verify the design of the compliant joints. Experiments were carried out to assess the relationship between the force input by the servo actuators and joint deflection. Additional experiments were carried out to determine the maximum pinching force that can be exerted by the compliant graspers. A prototype of the complete surgical tool was built to demonstrate the utility of the proposed compliant tool tip as an alternative to traditional tool tip for a handheld powered surgical tool.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of a Two Degree-of-Freedom Compliant Tool Tip for a Handheld Powered Surgical Tool
    typeJournal Paper
    journal volume11
    journal issue1
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4034879
    journal fristpage14502
    journal lastpage014502-3
    treeJournal of Medical Devices:;2017:;volume( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian