YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Medical Devices
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Evaluation of a Portable Laparoscopic Training System Using Virtual Reality

    Source: Journal of Medical Devices:;2017:;volume( 011 ):;issue: 001::page 11002
    Author:
    Zahiri, Mohsen
    ,
    Booton, Ryan
    ,
    Siu, Ka-Chun
    ,
    Nelson, Carl A.
    DOI: 10.1115/1.4034881
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: The ubiquitous nature of laparoscopic surgery and the decreased training time available for surgeons are driving an increased need for effective training systems to help surgeons learn different procedures. A cost-effective and user-friendly simulator has been designed to imitate specific training tasks for laparoscopic surgery in virtual environments via image processing and computer vision. The capability of using various actual surgical instruments suited for these specific procedures gives heightened fidelity to the simulator. Image processing via matlab software provides real-time mapping of the graspers in the workspace to the virtual reality (VR) environment (vizard software). Two different tasks (peg transfer and needle passing) were designed to evaluate trainees and compare their performance with characteristics of expert surgeons. Pilot testing of the system was carried out with 11 subjects to validate the similarity of this device with an existing surgical box trainer. Task completion time and muscle activity have been used as metrics for evaluation. The decrease in completion time for all subjects suggests similarity of skills transfer for both simulators. In addition, the p-value of muscle activity showed no significant differences for most muscles in the peg transfer task when using either the VR or physical analog environment and no significant differences for about half of the muscles in the needle passing task. Based on the results, the new proposed VR simulator appears to be a viable alternative to help trainees gain laparoscopic skills.
    • Download: (1.001Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Evaluation of a Portable Laparoscopic Training System Using Virtual Reality

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235189
    Collections
    • Journal of Medical Devices

    Show full item record

    contributor authorZahiri, Mohsen
    contributor authorBooton, Ryan
    contributor authorSiu, Ka-Chun
    contributor authorNelson, Carl A.
    date accessioned2017-11-25T07:18:29Z
    date available2017-11-25T07:18:29Z
    date copyright2016/21/12
    date issued2017
    identifier issn1932-6181
    identifier othermed_011_01_011002.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235189
    description abstractThe ubiquitous nature of laparoscopic surgery and the decreased training time available for surgeons are driving an increased need for effective training systems to help surgeons learn different procedures. A cost-effective and user-friendly simulator has been designed to imitate specific training tasks for laparoscopic surgery in virtual environments via image processing and computer vision. The capability of using various actual surgical instruments suited for these specific procedures gives heightened fidelity to the simulator. Image processing via matlab software provides real-time mapping of the graspers in the workspace to the virtual reality (VR) environment (vizard software). Two different tasks (peg transfer and needle passing) were designed to evaluate trainees and compare their performance with characteristics of expert surgeons. Pilot testing of the system was carried out with 11 subjects to validate the similarity of this device with an existing surgical box trainer. Task completion time and muscle activity have been used as metrics for evaluation. The decrease in completion time for all subjects suggests similarity of skills transfer for both simulators. In addition, the p-value of muscle activity showed no significant differences for most muscles in the peg transfer task when using either the VR or physical analog environment and no significant differences for about half of the muscles in the needle passing task. Based on the results, the new proposed VR simulator appears to be a viable alternative to help trainees gain laparoscopic skills.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Evaluation of a Portable Laparoscopic Training System Using Virtual Reality
    typeJournal Paper
    journal volume11
    journal issue1
    journal titleJournal of Medical Devices
    identifier doi10.1115/1.4034881
    journal fristpage11002
    journal lastpage011002-6
    treeJournal of Medical Devices:;2017:;volume( 011 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian