YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identification and Comparison for Continuous Motion Characteristics of Three Two-Degree-of-Freedom Pointing Mechanisms

    Source: Journal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 005::page 51015
    Author:
    Yu, Jingjun
    ,
    Jin, Zhao
    ,
    Kong, Xianwen
    DOI: 10.1115/1.4037568
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Two-degree-of-freedom (2DOF) pointing mechanisms, including the gimbal structure, the 1-RR&2-RRR spherical parallel mechanism (SPM), and the Omni-Wrist III, are increasingly applied in tracking devices, mechanical transmission, and artificial joint. Though they share the same number of degree-of-freedom at any given configuration, they will exhibit and transfer different motion characteristics, such as rotation and rolling, when moving continuously. Thanks to the concept of operation mode, these three mechanisms' distinct continuous motion characteristics can be identified and further compared through Euler parameter quaternions, Euler angles, algebraic geometry, and axodes so that the appropriate mechanism for tracking or transmission can be selected. At first, elementary operation modes are numerated based on the number of zero components in a quaternion. In order to acquire all possible operation modes, a set of constraint equations relating to each mechanism are formulated, and an algebraic geometry method is adopted to solve the constraint equations that are much too complicated. For rotation, namely, 1DOF (one-degree-of-freedom) operation mode, its continuous rotation axes are investigated. As to rolling, namely, 2DOF operation mode, allowing for the fact that the difference in 2DOF operation mode of the three mechanisms is not intuitive, axode characteristics of the three mechanisms are investigated and compared. It is found that from the above process of identification and comparison on rotation and rolling, the three mechanisms' distinctive motion characteristics can be effectively obtained.
    • Download: (2.610Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identification and Comparison for Continuous Motion Characteristics of Three Two-Degree-of-Freedom Pointing Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235147
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorYu, Jingjun
    contributor authorJin, Zhao
    contributor authorKong, Xianwen
    date accessioned2017-11-25T07:18:21Z
    date available2017-11-25T07:18:21Z
    date copyright2017/31/8
    date issued2017
    identifier issn1942-4302
    identifier otherjmr_009_05_051015.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235147
    description abstractTwo-degree-of-freedom (2DOF) pointing mechanisms, including the gimbal structure, the 1-RR&2-RRR spherical parallel mechanism (SPM), and the Omni-Wrist III, are increasingly applied in tracking devices, mechanical transmission, and artificial joint. Though they share the same number of degree-of-freedom at any given configuration, they will exhibit and transfer different motion characteristics, such as rotation and rolling, when moving continuously. Thanks to the concept of operation mode, these three mechanisms' distinct continuous motion characteristics can be identified and further compared through Euler parameter quaternions, Euler angles, algebraic geometry, and axodes so that the appropriate mechanism for tracking or transmission can be selected. At first, elementary operation modes are numerated based on the number of zero components in a quaternion. In order to acquire all possible operation modes, a set of constraint equations relating to each mechanism are formulated, and an algebraic geometry method is adopted to solve the constraint equations that are much too complicated. For rotation, namely, 1DOF (one-degree-of-freedom) operation mode, its continuous rotation axes are investigated. As to rolling, namely, 2DOF operation mode, allowing for the fact that the difference in 2DOF operation mode of the three mechanisms is not intuitive, axode characteristics of the three mechanisms are investigated and compared. It is found that from the above process of identification and comparison on rotation and rolling, the three mechanisms' distinctive motion characteristics can be effectively obtained.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleIdentification and Comparison for Continuous Motion Characteristics of Three Two-Degree-of-Freedom Pointing Mechanisms
    typeJournal Paper
    journal volume9
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4037568
    journal fristpage51015
    journal lastpage051015-13
    treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian