YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design and Implementation of a Leg–Wheel Robot: Transleg

    Source: Journal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 005::page 51001
    Author:
    Wei, Zhong
    ,
    Song, Guangming
    ,
    Qiao, Guifang
    ,
    Zhang, Ying
    ,
    Sun, Huiyu
    DOI: 10.1115/1.4037018
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In this paper, the design and implementation of a novel leg–wheel robot called Transleg are presented. Transleg adopts the wire as the transmission mechanism to simplify the structure and reduce the weight. To the best knowledge of the authors, the wire-driven method has never been used in the leg–wheel robots, so it makes Transleg distinguished from the existing leg–wheel robots. Transleg possesses four transformable leg–wheel mechanisms, each of which has two active degrees-of-freedom (DOFs) in the legged mode and one in the wheeled mode. Two actuators driving each leg–wheel mechanism are mounted on the body, so the weight of the leg–wheel mechanism is reduced as far as possible, which contributes to improving the stability of the legged locomotion. Inspired by the quadruped mammals, a compliant spine mechanism is designed for Transleg. The spine mechanism is also actuated by two actuators to bend in the yaw and pitch directions. It will be beneficial to the turning motion in the legged and wheeled modes and the bounding gait in the legged mode. The design and kinematic analyses of the leg–wheel and spine mechanisms are presented in detail. To verify the feasibility of Transleg, a prototype is implemented. The experiments on the motions in the legged and wheeled modes, the switch between the two modes, and the spine motions are conducted. The experimental results demonstrate the validity of Transleg.
    • Download: (3.016Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design and Implementation of a Leg–Wheel Robot: Transleg

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235132
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorWei, Zhong
    contributor authorSong, Guangming
    contributor authorQiao, Guifang
    contributor authorZhang, Ying
    contributor authorSun, Huiyu
    date accessioned2017-11-25T07:18:20Z
    date available2017-11-25T07:18:20Z
    date copyright2017/22/6
    date issued2017
    identifier issn1942-4302
    identifier otherjmr_009_05_051001.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235132
    description abstractIn this paper, the design and implementation of a novel leg–wheel robot called Transleg are presented. Transleg adopts the wire as the transmission mechanism to simplify the structure and reduce the weight. To the best knowledge of the authors, the wire-driven method has never been used in the leg–wheel robots, so it makes Transleg distinguished from the existing leg–wheel robots. Transleg possesses four transformable leg–wheel mechanisms, each of which has two active degrees-of-freedom (DOFs) in the legged mode and one in the wheeled mode. Two actuators driving each leg–wheel mechanism are mounted on the body, so the weight of the leg–wheel mechanism is reduced as far as possible, which contributes to improving the stability of the legged locomotion. Inspired by the quadruped mammals, a compliant spine mechanism is designed for Transleg. The spine mechanism is also actuated by two actuators to bend in the yaw and pitch directions. It will be beneficial to the turning motion in the legged and wheeled modes and the bounding gait in the legged mode. The design and kinematic analyses of the leg–wheel and spine mechanisms are presented in detail. To verify the feasibility of Transleg, a prototype is implemented. The experiments on the motions in the legged and wheeled modes, the switch between the two modes, and the spine motions are conducted. The experimental results demonstrate the validity of Transleg.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign and Implementation of a Leg–Wheel Robot: Transleg
    typeJournal Paper
    journal volume9
    journal issue5
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4037018
    journal fristpage51001
    journal lastpage051001-9
    treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian