YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mobility and Constraint Analysis of Interconnected Hybrid Flexure Systems Via Screw Algebra and Graph Theory

    Source: Journal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 003::page 31018
    Author:
    Sun, Frederick
    ,
    Hopkins, Jonathan B.
    DOI: 10.1115/1.4035993
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper introduces a general method for analyzing flexure systems of any configuration, including those that cannot be broken into parallel and serial subsystems. Such flexure systems are called interconnected hybrid flexure systems because they possess limbs with intermediate bodies that are connected by flexure systems or elements. Specifically, the method introduced utilizes screw algebra and graph theory to help designers determine the freedom spaces (i.e., the geometric shapes that represent all the ways a body is permitted to move) for all the bodies joined together by compliant flexure elements within interconnected hybrid flexure systems (i.e., perform mobility analysis of general flexure systems). This method also allows designers to determine (i) whether such systems are under-constrained or not and (ii) whether such systems are over-constrained or exactly constrained (i.e., perform constraint analysis of general flexure systems). Although many flexure-based precision motion stages, compliant mechanisms, and microarchitectured materials possess topologies that are highly interconnected, the theory for performing the mobility and constraint analysis of such interconnected flexure systems using traditional screw theory does not currently exist. The theory introduced here lays the foundation for an automated tool that can rapidly generate the freedom spaces of every rigid body within a general flexure system without having to perform traditional computationally expensive finite element analysis. Case studies are provided to demonstrate the utility of the proposed theory.
    • Download: (1.221Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mobility and Constraint Analysis of Interconnected Hybrid Flexure Systems Via Screw Algebra and Graph Theory

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235105
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorSun, Frederick
    contributor authorHopkins, Jonathan B.
    date accessioned2017-11-25T07:18:18Z
    date available2017-11-25T07:18:18Z
    date copyright2017/27/3
    date issued2017
    identifier issn1942-4302
    identifier otherjmr_009_03_031018.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235105
    description abstractThis paper introduces a general method for analyzing flexure systems of any configuration, including those that cannot be broken into parallel and serial subsystems. Such flexure systems are called interconnected hybrid flexure systems because they possess limbs with intermediate bodies that are connected by flexure systems or elements. Specifically, the method introduced utilizes screw algebra and graph theory to help designers determine the freedom spaces (i.e., the geometric shapes that represent all the ways a body is permitted to move) for all the bodies joined together by compliant flexure elements within interconnected hybrid flexure systems (i.e., perform mobility analysis of general flexure systems). This method also allows designers to determine (i) whether such systems are under-constrained or not and (ii) whether such systems are over-constrained or exactly constrained (i.e., perform constraint analysis of general flexure systems). Although many flexure-based precision motion stages, compliant mechanisms, and microarchitectured materials possess topologies that are highly interconnected, the theory for performing the mobility and constraint analysis of such interconnected flexure systems using traditional screw theory does not currently exist. The theory introduced here lays the foundation for an automated tool that can rapidly generate the freedom spaces of every rigid body within a general flexure system without having to perform traditional computationally expensive finite element analysis. Case studies are provided to demonstrate the utility of the proposed theory.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleMobility and Constraint Analysis of Interconnected Hybrid Flexure Systems Via Screw Algebra and Graph Theory
    typeJournal Paper
    journal volume9
    journal issue3
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4035993
    journal fristpage31018
    journal lastpage031018-12
    treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian