YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper

    Source: Journal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 003::page 31017
    Author:
    Bai, Guochao
    ,
    Kong, Xianwen
    ,
    Ritchie, James Millar
    DOI: 10.1115/1.4035800
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: In recent years, applications in industrial assemblies within a size range from 0.5 mm to 100 mm are increasing due to the large demands for new products, especially those associated with digital multimedia. Research on grippers or robotic hands within the mesoscopic scale of this range has not been explored in any great detail. This paper outlines the development of a gripper to bridge the gap between microgrippers and macrogrippers by extending the gripping range to the mesoscopic scale, particularly without the need to switch grippers during industrial assembly. The mesoscopic scale gripper (meso-gripper) researched in this work has two modes of operation: passive adjusting mode and angled gripping mode, adapting its configuration to the shape of object automatically. This form of gripping and the associated mechanism are both novel in their implementation and operation. First, the concept of mesoscopic scale in robotic gripping is presented and contextualized around the background of inefficient hand switching processes and applications for assembly. The passive adjusting and angled gripping modes are then analyzed and a dual functional mechanism design proposed. A geometric constraint method is then demonstrated which facilitates task-based dimensional synthesis after which the kinematics of synthesized mechanism is investigated. The modified synthesized mechanism gripper is then investigated according to stiffness and layout. Finally, a 3D printed prototype is successfully tested, and the two integrated gripping modes for universal gripping verified.
    • Download: (12.43Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Kinematic Analysis and Dimensional Synthesis of a Meso-Gripper

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235104
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorBai, Guochao
    contributor authorKong, Xianwen
    contributor authorRitchie, James Millar
    date accessioned2017-11-25T07:18:18Z
    date available2017-11-25T07:18:18Z
    date copyright2017/24/3
    date issued2017
    identifier issn1942-4302
    identifier otherjmr_009_03_031017.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235104
    description abstractIn recent years, applications in industrial assemblies within a size range from 0.5 mm to 100 mm are increasing due to the large demands for new products, especially those associated with digital multimedia. Research on grippers or robotic hands within the mesoscopic scale of this range has not been explored in any great detail. This paper outlines the development of a gripper to bridge the gap between microgrippers and macrogrippers by extending the gripping range to the mesoscopic scale, particularly without the need to switch grippers during industrial assembly. The mesoscopic scale gripper (meso-gripper) researched in this work has two modes of operation: passive adjusting mode and angled gripping mode, adapting its configuration to the shape of object automatically. This form of gripping and the associated mechanism are both novel in their implementation and operation. First, the concept of mesoscopic scale in robotic gripping is presented and contextualized around the background of inefficient hand switching processes and applications for assembly. The passive adjusting and angled gripping modes are then analyzed and a dual functional mechanism design proposed. A geometric constraint method is then demonstrated which facilitates task-based dimensional synthesis after which the kinematics of synthesized mechanism is investigated. The modified synthesized mechanism gripper is then investigated according to stiffness and layout. Finally, a 3D printed prototype is successfully tested, and the two integrated gripping modes for universal gripping verified.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleKinematic Analysis and Dimensional Synthesis of a Meso-Gripper
    typeJournal Paper
    journal volume9
    journal issue3
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4035800
    journal fristpage31017
    journal lastpage031017-13
    treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian