YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanisms and Robotics
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simultaneous Topological and Dimensional Synthesis of Planar Morphing Mechanisms

    Source: Journal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 002::page 21009
    Author:
    Funke, Lawrence W.
    ,
    Schmiedeler, James P.
    DOI: 10.1115/1.4035878
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: This paper presents a general method to perform simultaneous topological and dimensional synthesis for planar rigid-body morphing mechanisms. The synthesis is framed as a multi-objective optimization problem for which the first objective is to minimize the error in matching the desired shapes. The second objective is typically to minimize the actuating force/moment required to move the mechanism, but different applications may require a different choice. All the possible topologies are enumerated for morphing mechanism designs with a specified number of degrees of freedom (DOF), and infeasible topologies are removed from the search space. A multi-objective genetic algorithm (GA) is then used to simultaneously handle the discrete nature of the topological optimization and the continuous nature of the dimensional optimization. In this way, candidate solutions from any of the feasible topologies enumerated can be evaluated and compared. Ultimately, the method yields a sizable population of viable solutions, often of different topologies, so that the designer can manage engineering tradeoffs in selecting the best mechanism. Three examples illustrate the strengths of this method. The first examines the advantages gained by considering and optimizing across all the topologies simultaneously. The second and third demonstrate the method's versatility by incorporating prismatic joints into the morphing chain to allow for morphing between shapes that have significant changes in both shape and arc length.
    • Download: (1.166Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simultaneous Topological and Dimensional Synthesis of Planar Morphing Mechanisms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235074
    Collections
    • Journal of Mechanisms and Robotics

    Show full item record

    contributor authorFunke, Lawrence W.
    contributor authorSchmiedeler, James P.
    date accessioned2017-11-25T07:18:15Z
    date available2017-11-25T07:18:15Z
    date copyright2017/9/3
    date issued2017
    identifier issn1942-4302
    identifier otherjmr_009_02_021009.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235074
    description abstractThis paper presents a general method to perform simultaneous topological and dimensional synthesis for planar rigid-body morphing mechanisms. The synthesis is framed as a multi-objective optimization problem for which the first objective is to minimize the error in matching the desired shapes. The second objective is typically to minimize the actuating force/moment required to move the mechanism, but different applications may require a different choice. All the possible topologies are enumerated for morphing mechanism designs with a specified number of degrees of freedom (DOF), and infeasible topologies are removed from the search space. A multi-objective genetic algorithm (GA) is then used to simultaneously handle the discrete nature of the topological optimization and the continuous nature of the dimensional optimization. In this way, candidate solutions from any of the feasible topologies enumerated can be evaluated and compared. Ultimately, the method yields a sizable population of viable solutions, often of different topologies, so that the designer can manage engineering tradeoffs in selecting the best mechanism. Three examples illustrate the strengths of this method. The first examines the advantages gained by considering and optimizing across all the topologies simultaneously. The second and third demonstrate the method's versatility by incorporating prismatic joints into the morphing chain to allow for morphing between shapes that have significant changes in both shape and arc length.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSimultaneous Topological and Dimensional Synthesis of Planar Morphing Mechanisms
    typeJournal Paper
    journal volume9
    journal issue2
    journal titleJournal of Mechanisms and Robotics
    identifier doi10.1115/1.4035878
    journal fristpage21009
    journal lastpage021009-9
    treeJournal of Mechanisms and Robotics:;2017:;volume( 009 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian