YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Learning an Optimization Algorithm Through Human Design Iterations

    Source: Journal of Mechanical Design:;2017:;volume( 139 ):;issue: 010::page 101404
    Author:
    Sexton, Thurston
    ,
    Ren, Max Yi
    DOI: 10.1115/1.4037344
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Solving optimal design problems through crowdsourcing faces a dilemma: On the one hand, human beings have been shown to be more effective than algorithms at searching for good solutions of certain real-world problems with high-dimensional or discrete solution spaces; on the other hand, the cost of setting up crowdsourcing environments, the uncertainty in the crowd's domain-specific competence, and the lack of commitment of the crowd contribute to the lack of real-world application of design crowdsourcing. We are thus motivated to investigate a solution-searching mechanism where an optimization algorithm is tuned based on human demonstrations on solution searching, so that the search can be continued after human participants abandon the problem. To do so, we model the iterative search process as a Bayesian optimization (BO) algorithm and propose an inverse BO (IBO) algorithm to find the maximum likelihood estimators (MLEs) of the BO parameters based on human solutions. We show through a vehicle design and control problem that the search performance of BO can be improved by recovering its parameters based on an effective human search. Thus, IBO has the potential to improve the success rate of design crowdsourcing activities, by requiring only good search strategies instead of good solutions from the crowd.
    • Download: (2.323Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Learning an Optimization Algorithm Through Human Design Iterations

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235014
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorSexton, Thurston
    contributor authorRen, Max Yi
    date accessioned2017-11-25T07:18:10Z
    date available2017-11-25T07:18:10Z
    date copyright2017/30/8
    date issued2017
    identifier issn1050-0472
    identifier othermd_139_10_101404.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235014
    description abstractSolving optimal design problems through crowdsourcing faces a dilemma: On the one hand, human beings have been shown to be more effective than algorithms at searching for good solutions of certain real-world problems with high-dimensional or discrete solution spaces; on the other hand, the cost of setting up crowdsourcing environments, the uncertainty in the crowd's domain-specific competence, and the lack of commitment of the crowd contribute to the lack of real-world application of design crowdsourcing. We are thus motivated to investigate a solution-searching mechanism where an optimization algorithm is tuned based on human demonstrations on solution searching, so that the search can be continued after human participants abandon the problem. To do so, we model the iterative search process as a Bayesian optimization (BO) algorithm and propose an inverse BO (IBO) algorithm to find the maximum likelihood estimators (MLEs) of the BO parameters based on human solutions. We show through a vehicle design and control problem that the search performance of BO can be improved by recovering its parameters based on an effective human search. Thus, IBO has the potential to improve the success rate of design crowdsourcing activities, by requiring only good search strategies instead of good solutions from the crowd.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleLearning an Optimization Algorithm Through Human Design Iterations
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4037344
    journal fristpage101404
    journal lastpage101404-10
    treeJournal of Mechanical Design:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian