YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Design of Dynamic Systems Using Surrogate Models of Derivative Functions

    Source: Journal of Mechanical Design:;2017:;volume( 139 ):;issue: 010::page 101402
    Author:
    Deshmukh, Anand P.
    ,
    Allison, James T.
    DOI: 10.1115/1.4037407
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Optimization of dynamic systems often requires system simulation. Several important classes of dynamic system models have computationally expensive time derivative functions, resulting in simulations that are significantly slower than real time. This makes design optimization based on these models impractical. An efficient two-loop method, based on surrogate modeling, is presented here for solving dynamic system design problems with computationally expensive derivative functions. A surrogate model is constructed for only the derivative function instead of the simulation response. Simulation is performed based on the computationally inexpensive surrogate derivative function; this strategy preserves the nature of the dynamic system, and improves computational efficiency and accuracy compared to conventional surrogate modeling. The inner-loop optimization problem is solved for a given derivative function surrogate model (DFSM), and the outer loop updates the surrogate model based on optimization results. One unique challenge of this strategy is to ensure surrogate model accuracy in two regions: near the optimal point in the design space, and near the state trajectory in the state space corresponding to the optimal design. The initial evidence of method effectiveness is demonstrated first using two simple design examples, followed by a more detailed wind turbine codesign problem that accounts for aeroelastic effects and simultaneously optimizes physical and control system design. In the last example, a linear state-dependent model is used that requires computationally expensive matrix updates when either state or design variables change. Results indicate an order-of-magnitude reduction in function evaluations when compared to conventional surrogate modeling. The DFSM method is expected to be beneficial only for problems where derivative function evaluation expense, and not large problem dimension, is the primary contributor to solution expense (a restricted but important problem class). The initial studies presented here revealed opportunities for potential further method improvement and deeper investigation.
    • Download: (1.111Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Design of Dynamic Systems Using Surrogate Models of Derivative Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4235012
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorDeshmukh, Anand P.
    contributor authorAllison, James T.
    date accessioned2017-11-25T07:18:10Z
    date available2017-11-25T07:18:10Z
    date copyright2017/30/8
    date issued2017
    identifier issn1050-0472
    identifier othermd_139_10_101402.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4235012
    description abstractOptimization of dynamic systems often requires system simulation. Several important classes of dynamic system models have computationally expensive time derivative functions, resulting in simulations that are significantly slower than real time. This makes design optimization based on these models impractical. An efficient two-loop method, based on surrogate modeling, is presented here for solving dynamic system design problems with computationally expensive derivative functions. A surrogate model is constructed for only the derivative function instead of the simulation response. Simulation is performed based on the computationally inexpensive surrogate derivative function; this strategy preserves the nature of the dynamic system, and improves computational efficiency and accuracy compared to conventional surrogate modeling. The inner-loop optimization problem is solved for a given derivative function surrogate model (DFSM), and the outer loop updates the surrogate model based on optimization results. One unique challenge of this strategy is to ensure surrogate model accuracy in two regions: near the optimal point in the design space, and near the state trajectory in the state space corresponding to the optimal design. The initial evidence of method effectiveness is demonstrated first using two simple design examples, followed by a more detailed wind turbine codesign problem that accounts for aeroelastic effects and simultaneously optimizes physical and control system design. In the last example, a linear state-dependent model is used that requires computationally expensive matrix updates when either state or design variables change. Results indicate an order-of-magnitude reduction in function evaluations when compared to conventional surrogate modeling. The DFSM method is expected to be beneficial only for problems where derivative function evaluation expense, and not large problem dimension, is the primary contributor to solution expense (a restricted but important problem class). The initial studies presented here revealed opportunities for potential further method improvement and deeper investigation.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleDesign of Dynamic Systems Using Surrogate Models of Derivative Functions
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4037407
    journal fristpage101402
    journal lastpage101402-12
    treeJournal of Mechanical Design:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian