YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Enhancing Full-Film Lubrication Performance Via Arbitrary Surface Texture Design

    Source: Journal of Mechanical Design:;2017:;volume( 139 ):;issue: 005::page 53401
    Author:
    Hoon Lee, Yong
    ,
    Schuh, Jonathon K.
    ,
    Ewoldt, Randy H.
    ,
    Allison, James T.
    DOI: 10.1115/1.4036133
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Minimizing energy loss and improving system load capacity and compactness are important objectives for fluid power systems. Recent studies reveal that microtextured surfaces can reduce friction in full-film lubrication, and that asymmetric textures can reduce friction and increase normal force simultaneously. As an extension of these previous discoveries, we explore how enhanced texture design can maximize these objectives together. We design surface texture using a set of distinct parameterizations, ranging from simple to complex, to improve performance beyond what is possible for previously investigated texture geometries. Here, we consider a rotational tribo-rheometer configuration with a fixed textured bottom disk and a rotating top flat disk with controlled separation gap. To model Newtonian fluid flow, the Reynolds equation is formulated in cylindrical coordinates and solved using a pseudospectral method. Model assumptions include incompressibility, steady flow, constant viscosity, and a small gap height to disk radius ratio. Multi-objective optimization problems are solved using the epsilon-constraint method along with an interior-point (IP) nonlinear programming algorithm. The trade-off between competing objectives is quantified, revealing mechanisms of performance enhancement. Various geometries are explored and optimized, including symmetric and asymmetric circular dimples, and novel arbitrary continuous texture geometries represented using two-dimensional cubic spline interpolation. Shifting from simple dimpled textures to more general texture geometries resulted in significant simultaneous improvement in both performance metrics for full-film lubrication texture design. An important qualitative result is that textures resembling a spiral blade tend to improve performance for rotating contacts.
    • Download: (4.273Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Enhancing Full-Film Lubrication Performance Via Arbitrary Surface Texture Design

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234960
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorHoon Lee, Yong
    contributor authorSchuh, Jonathon K.
    contributor authorEwoldt, Randy H.
    contributor authorAllison, James T.
    date accessioned2017-11-25T07:18:05Z
    date available2017-11-25T07:18:05Z
    date copyright2017/24/3
    date issued2017
    identifier issn1050-0472
    identifier othermd_139_05_053401.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234960
    description abstractMinimizing energy loss and improving system load capacity and compactness are important objectives for fluid power systems. Recent studies reveal that microtextured surfaces can reduce friction in full-film lubrication, and that asymmetric textures can reduce friction and increase normal force simultaneously. As an extension of these previous discoveries, we explore how enhanced texture design can maximize these objectives together. We design surface texture using a set of distinct parameterizations, ranging from simple to complex, to improve performance beyond what is possible for previously investigated texture geometries. Here, we consider a rotational tribo-rheometer configuration with a fixed textured bottom disk and a rotating top flat disk with controlled separation gap. To model Newtonian fluid flow, the Reynolds equation is formulated in cylindrical coordinates and solved using a pseudospectral method. Model assumptions include incompressibility, steady flow, constant viscosity, and a small gap height to disk radius ratio. Multi-objective optimization problems are solved using the epsilon-constraint method along with an interior-point (IP) nonlinear programming algorithm. The trade-off between competing objectives is quantified, revealing mechanisms of performance enhancement. Various geometries are explored and optimized, including symmetric and asymmetric circular dimples, and novel arbitrary continuous texture geometries represented using two-dimensional cubic spline interpolation. Shifting from simple dimpled textures to more general texture geometries resulted in significant simultaneous improvement in both performance metrics for full-film lubrication texture design. An important qualitative result is that textures resembling a spiral blade tend to improve performance for rotating contacts.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleEnhancing Full-Film Lubrication Performance Via Arbitrary Surface Texture Design
    typeJournal Paper
    journal volume139
    journal issue5
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4036133
    journal fristpage53401
    journal lastpage053401-13
    treeJournal of Mechanical Design:;2017:;volume( 139 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian