YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Mechanical Design
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions

    Source: Journal of Mechanical Design:;2016:;volume( 138 ):;issue: 011::page 111412
    Author:
    Pandita, Piyush
    ,
    Bilionis, Ilias
    ,
    Panchal, Jitesh
    DOI: 10.1115/1.4034104
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Design optimization under uncertainty is notoriously difficult when the objective function is expensive to evaluate. State-of-the-art techniques, e.g., stochastic optimization or sampling average approximation, fail to learn exploitable patterns from collected data and require a lot of objective function evaluations. There is a need for techniques that alleviate the high cost of information acquisition and select sequential simulations optimally. In the field of deterministic single-objective unconstrained global optimization, the Bayesian global optimization (BGO) approach has been relatively successful in addressing the information acquisition problem. BGO builds a probabilistic surrogate of the expensive objective function and uses it to define an information acquisition function (IAF) that quantifies the merit of making new objective evaluations. In this work, we reformulate the expected improvement (EI) IAF to filter out parametric and measurement uncertainties. We bypass the curse of dimensionality, since the method does not require learning the response surface as a function of the stochastic parameters, and we employ a fully Bayesian interpretation of Gaussian processes (GPs) by constructing a particle approximation of the posterior of its hyperparameters using adaptive Markov chain Monte Carlo (MCMC) to increase the methods robustness. Also, our approach quantifies the epistemic uncertainty on the location of the optimum and the optimal value as induced by the limited number of objective evaluations used in obtaining it. We verify and validate our approach by solving two synthetic optimization problems under uncertainty and demonstrate it by solving the oil-well placement problem (OWPP) with uncertainties in the permeability field and the oil price time series.
    • Download: (2.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234880
    Collections
    • Journal of Mechanical Design

    Show full item record

    contributor authorPandita, Piyush
    contributor authorBilionis, Ilias
    contributor authorPanchal, Jitesh
    date accessioned2017-11-25T07:17:58Z
    date available2017-11-25T07:17:58Z
    date copyright2016/09/12
    date issued2016
    identifier issn1050-0472
    identifier othermd_138_11_111412.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234880
    description abstractDesign optimization under uncertainty is notoriously difficult when the objective function is expensive to evaluate. State-of-the-art techniques, e.g., stochastic optimization or sampling average approximation, fail to learn exploitable patterns from collected data and require a lot of objective function evaluations. There is a need for techniques that alleviate the high cost of information acquisition and select sequential simulations optimally. In the field of deterministic single-objective unconstrained global optimization, the Bayesian global optimization (BGO) approach has been relatively successful in addressing the information acquisition problem. BGO builds a probabilistic surrogate of the expensive objective function and uses it to define an information acquisition function (IAF) that quantifies the merit of making new objective evaluations. In this work, we reformulate the expected improvement (EI) IAF to filter out parametric and measurement uncertainties. We bypass the curse of dimensionality, since the method does not require learning the response surface as a function of the stochastic parameters, and we employ a fully Bayesian interpretation of Gaussian processes (GPs) by constructing a particle approximation of the posterior of its hyperparameters using adaptive Markov chain Monte Carlo (MCMC) to increase the methods robustness. Also, our approach quantifies the epistemic uncertainty on the location of the optimum and the optimal value as induced by the limited number of objective evaluations used in obtaining it. We verify and validate our approach by solving two synthetic optimization problems under uncertainty and demonstrate it by solving the oil-well placement problem (OWPP) with uncertainties in the permeability field and the oil price time series.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleExtending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions
    typeJournal Paper
    journal volume138
    journal issue11
    journal titleJournal of Mechanical Design
    identifier doi10.1115/1.4034104
    journal fristpage111412
    journal lastpage111412-8
    treeJournal of Mechanical Design:;2016:;volume( 138 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian