YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Orthogonal Analysis of Multisensor Data Fusion for Improved Quality Control

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 010::page 101008
    Author:
    Wang, Peng
    ,
    Fan, Zhaoyan
    ,
    Kazmer, David O.
    ,
    Gao, Robert X.
    DOI: 10.1115/1.4036907
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Multisensor data fusion can enable comprehensive representation of manufacturing processes, thereby contributing to improved part quality control. The effectiveness of data fusion depends on the nature of the input data. This paper investigates orthogonality as a measure for the effectiveness of data fusion, with the goal to maximize data correlation with part quality toward manufacturing process control. By decomposing sensor data into a lifted-dimensional space, contribution from each of the sensors for quantifying part quality is revealed by the corresponding projection vector. Performance evaluation using data measured from polymer injection molding confirmed the effectiveness of the developed technique.
    • Download: (1.394Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Orthogonal Analysis of Multisensor Data Fusion for Improved Quality Control

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234849
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorWang, Peng
    contributor authorFan, Zhaoyan
    contributor authorKazmer, David O.
    contributor authorGao, Robert X.
    date accessioned2017-11-25T07:17:56Z
    date available2017-11-25T07:17:56Z
    date copyright2017/24/8
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_10_101008.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234849
    description abstractMultisensor data fusion can enable comprehensive representation of manufacturing processes, thereby contributing to improved part quality control. The effectiveness of data fusion depends on the nature of the input data. This paper investigates orthogonality as a measure for the effectiveness of data fusion, with the goal to maximize data correlation with part quality toward manufacturing process control. By decomposing sensor data into a lifted-dimensional space, contribution from each of the sensors for quantifying part quality is revealed by the corresponding projection vector. Performance evaluation using data measured from polymer injection molding confirmed the effectiveness of the developed technique.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleOrthogonal Analysis of Multisensor Data Fusion for Improved Quality Control
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036907
    journal fristpage101008
    journal lastpage101008-8
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian