YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 010::page 101004
    Author:
    Xing, YanFeng
    DOI: 10.1115/1.4037106
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Fixture layout can affect deformation and dimensional variation of sheet metal assemblies. Conventionally, the assembly dimensions are simulated with a quantity of finite element (FE) analyses, and fixture layout optimization needs significant user intervention and unaffordable iterations of finite element analyses. This paper therefore proposes a fully automated and efficient method of fixture layout optimization based on the combination of 3dcs simulation (for dimensional analyses) and global optimization algorithms. In this paper, two global algorithms are proposed to optimize fixture locator points, which are social radiation algorithm (SRA) and GAOT, a genetic algorithm (GA) in optimization toolbox in matlab. The flowchart of fixture design includes the following steps: (1) The locating points, the key elements of a fixture layout, are selected from a much smaller candidate pool thanks to our proposed manufacturing constraints based filtering methods and thus the computational efficiency is greatly improved. (2) The two global optimization algorithms are edited to be used to optimize fixture schemes based on matlab. (3) Since matlab macrocommands of 3dcs have been developed to calculate assembly dimensions, the optimization process is fully automated. A case study of inner hood is applied to demonstrate the proposed method. The results show that the GAOT algorithm is more suitable than SRA for generating the optimal fixture layout with excellent efficiency for engineering applications.
    • Download: (3.620Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234845
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorXing, YanFeng
    date accessioned2017-11-25T07:17:55Z
    date available2017-11-25T07:17:55Z
    date copyright2017/24/8
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_10_101004.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234845
    description abstractFixture layout can affect deformation and dimensional variation of sheet metal assemblies. Conventionally, the assembly dimensions are simulated with a quantity of finite element (FE) analyses, and fixture layout optimization needs significant user intervention and unaffordable iterations of finite element analyses. This paper therefore proposes a fully automated and efficient method of fixture layout optimization based on the combination of 3dcs simulation (for dimensional analyses) and global optimization algorithms. In this paper, two global algorithms are proposed to optimize fixture locator points, which are social radiation algorithm (SRA) and GAOT, a genetic algorithm (GA) in optimization toolbox in matlab. The flowchart of fixture design includes the following steps: (1) The locating points, the key elements of a fixture layout, are selected from a much smaller candidate pool thanks to our proposed manufacturing constraints based filtering methods and thus the computational efficiency is greatly improved. (2) The two global optimization algorithms are edited to be used to optimize fixture schemes based on matlab. (3) Since matlab macrocommands of 3dcs have been developed to calculate assembly dimensions, the optimization process is fully automated. A case study of inner hood is applied to demonstrate the proposed method. The results show that the GAOT algorithm is more suitable than SRA for generating the optimal fixture layout with excellent efficiency for engineering applications.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleFixture Layout Design of Sheet Metal Parts Based on Global Optimization Algorithms
    typeJournal Paper
    journal volume139
    journal issue10
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4037106
    journal fristpage101004
    journal lastpage101004-10
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian