YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Subsurface Deformation Generated by Orthogonal Cutting: Analytical Modeling and Experimental Verification

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 009::page 94502
    Author:
    Zhang, Dong
    ,
    Zhang, Xiao-Ming
    ,
    Leopold, Jürgen
    ,
    Ding, Han
    DOI: 10.1115/1.4036994
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Subsurface deformation of the cutting process has attracted a great deal of attention due to its tight relationship with subsurface hardening, microstructure alteration, grain refinement, and white layer formation. To predict the subsurface deformation of the machined components, an analytical model is proposed in this paper. The mechanical and thermal loads exerted on the workpiece by the primary and tertiary shear zones are predicted by a combination of Oxley's predictive model and Fang's slip line field. The stress field and temperature field are calculated based on contact mechanics and the moving heat source theory, respectively. However, the elastic–plastic regime induced by the material yielding hinders the direct derivation of subsurface plastic deformation from the stress field and the work material constitutive model. To tackle this problem, a blending function of the increment of elastic strain is developed to derive the plastic strain. In addition, a sophisticated material constitutive model considering strain hardening, strain rate sensitivity, and thermal softening effects of work material is incorporated into this analytical model. To validate this model, finite element simulations of the subsurface deformation during orthogonal cutting of AISI 52100 steel are conducted. Experimental verification of the subsurface deformation is carried out through a novel subsurface deformation measurement technique based on digital image correlation (DIC) technique. To demonstrate applications of the subsurface deformation prediction, the subsurface microhardness of the machined component is experimentally tested and compared against the predicted values based on the proposed method.
    • Download: (6.645Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Subsurface Deformation Generated by Orthogonal Cutting: Analytical Modeling and Experimental Verification

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234839
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorZhang, Dong
    contributor authorZhang, Xiao-Ming
    contributor authorLeopold, Jürgen
    contributor authorDing, Han
    date accessioned2017-11-25T07:17:55Z
    date available2017-11-25T07:17:55Z
    date copyright2017/18/7
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_09_094502.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234839
    description abstractSubsurface deformation of the cutting process has attracted a great deal of attention due to its tight relationship with subsurface hardening, microstructure alteration, grain refinement, and white layer formation. To predict the subsurface deformation of the machined components, an analytical model is proposed in this paper. The mechanical and thermal loads exerted on the workpiece by the primary and tertiary shear zones are predicted by a combination of Oxley's predictive model and Fang's slip line field. The stress field and temperature field are calculated based on contact mechanics and the moving heat source theory, respectively. However, the elastic–plastic regime induced by the material yielding hinders the direct derivation of subsurface plastic deformation from the stress field and the work material constitutive model. To tackle this problem, a blending function of the increment of elastic strain is developed to derive the plastic strain. In addition, a sophisticated material constitutive model considering strain hardening, strain rate sensitivity, and thermal softening effects of work material is incorporated into this analytical model. To validate this model, finite element simulations of the subsurface deformation during orthogonal cutting of AISI 52100 steel are conducted. Experimental verification of the subsurface deformation is carried out through a novel subsurface deformation measurement technique based on digital image correlation (DIC) technique. To demonstrate applications of the subsurface deformation prediction, the subsurface microhardness of the machined component is experimentally tested and compared against the predicted values based on the proposed method.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleSubsurface Deformation Generated by Orthogonal Cutting: Analytical Modeling and Experimental Verification
    typeJournal Paper
    journal volume139
    journal issue9
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036994
    journal fristpage94502
    journal lastpage094502-12
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian