YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    •   YE&T Library
    • ASME
    • Journal of Manufacturing Science and Engineering
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Study of Layer Formation During Droplet-Based Three-Dimensional Printing of Gel Structures

    Source: Journal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 009::page 91009
    Author:
    Christensen, Kyle
    ,
    Huang, Yong
    DOI: 10.1115/1.4036785
    Publisher: The American Society of Mechanical Engineers (ASME)
    Abstract: Additive manufacturing, also known as three-dimensional (3D) printing, is an approach in which a structure may be fabricated layer by layer. For 3D inkjet printing, droplets are ejected from a nozzle, and each layer is formed droplet by droplet. Inkjet printing has been widely applied for the fabrication of 3D biological gel structures, but the knowledge of the microscale interactions between printed droplets is still largely elusive. This study aims to elucidate the layer formation mechanism in terms of the formation of single lines and layers comprised of adjacent lines during drop-on-demand inkjet printing of alginate using high speed imaging and particle image velocimetry. Inkjet droplets are found to impact, spread, and coalesce within a fluid region at the deposition site, forming coherent printed lines within a layer. The effects of printing conditions on the behavior of droplets during layer formation are discussed and modeled based on gelation dynamics, and recommendations are presented to enable controllable and reliable fabrication of gel structures. The effects of gelation on droplet impact dynamics are found to be negligible during alginate printing, and interfaces are found to form between printed lines within a layer depending on printing conditions, printing path orientation, and gelation dynamics.
    • Download: (2.271Mb)
    • Show Full MetaData Hide Full MetaData
    • Get RIS
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Study of Layer Formation During Droplet-Based Three-Dimensional Printing of Gel Structures

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4234829
    Collections
    • Journal of Manufacturing Science and Engineering

    Show full item record

    contributor authorChristensen, Kyle
    contributor authorHuang, Yong
    date accessioned2017-11-25T07:17:54Z
    date available2017-11-25T07:17:54Z
    date copyright2017/14/7
    date issued2017
    identifier issn1087-1357
    identifier othermanu_139_09_091009.pdf
    identifier urihttp://138.201.223.254:8080/yetl1/handle/yetl/4234829
    description abstractAdditive manufacturing, also known as three-dimensional (3D) printing, is an approach in which a structure may be fabricated layer by layer. For 3D inkjet printing, droplets are ejected from a nozzle, and each layer is formed droplet by droplet. Inkjet printing has been widely applied for the fabrication of 3D biological gel structures, but the knowledge of the microscale interactions between printed droplets is still largely elusive. This study aims to elucidate the layer formation mechanism in terms of the formation of single lines and layers comprised of adjacent lines during drop-on-demand inkjet printing of alginate using high speed imaging and particle image velocimetry. Inkjet droplets are found to impact, spread, and coalesce within a fluid region at the deposition site, forming coherent printed lines within a layer. The effects of printing conditions on the behavior of droplets during layer formation are discussed and modeled based on gelation dynamics, and recommendations are presented to enable controllable and reliable fabrication of gel structures. The effects of gelation on droplet impact dynamics are found to be negligible during alginate printing, and interfaces are found to form between printed lines within a layer depending on printing conditions, printing path orientation, and gelation dynamics.
    publisherThe American Society of Mechanical Engineers (ASME)
    titleStudy of Layer Formation During Droplet-Based Three-Dimensional Printing of Gel Structures
    typeJournal Paper
    journal volume139
    journal issue9
    journal titleJournal of Manufacturing Science and Engineering
    identifier doi10.1115/1.4036785
    journal fristpage91009
    journal lastpage091009-8
    treeJournal of Manufacturing Science and Engineering:;2017:;volume( 139 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian